solving equations but they get increasingly awesome

2024 ж. 22 Мам.
1 123 214 Рет қаралды

Solving polynomial equations but they get increasingly more awesome. We will also be solving them with different methods such as using the quadratic formula, factoring by grouping, a special way to complete the square, and also utilizing the 6th root of unity.
Try this EXTREME quintic equation 👉 • EXTREME quintic equati...
0:00 5 levels of a polynomial equation, from good to AWESOME!
0:3 linear equation x+1=0
0:16 quadratic equation x^2+x+1=0
1:36 cubic equation x^3+x^2+x+1=0
2:41 quadratic equation x^4+x^3+x^2+x+1=0
7:01 quintic equation x^5+x^4+x^3+x^2+x+1=0
🛍 Shop math t-shirts & hoodies: bit.ly/bprpmerch
10% off with the code "WELCOME10"
----------------------------------------
**Thanks to ALL my lovely patrons for supporting my channel and believing in what I do**
AP-IP Ben Delo Marcelo Silva Ehud Ezra 3blue1brown Joseph DeStefano
Mark Mann Philippe Zivan Sussholz AlkanKondo89 Adam Quentin Colley
Gary Tugan Stephen Stofka Alex Dodge Gary Huntress Alison Hansel
Delton Ding Klemens Christopher Ursich buda Vincent Poirier Toma Kolev
Tibees Bob Maxell A.B.C Cristian Navarro Jan Bormans Galios Theorist
Robert Sundling Stuart Wurtman Nick S William O'Corrigan Ron Jensen
Patapom Daniel Kahn Lea Denise James Steven Ridgway Jason Bucata
Mirko Schultz xeioex Jean-Manuel Izaret Jason Clement robert huff
Julian Moik Hiu Fung Lam Ronald Bryant Jan Řehák Robert Toltowicz
Angel Marchev, Jr. Antonio Luiz Brandao SquadriWilliam Laderer Natasha Caron Yevonnael Andrew Angel Marchev Sam Padilla ScienceBro Ryan Bingham
Papa Fassi Hoang Nguyen Arun Iyengar Michael Miller Sandun Panthangi
Skorj Olafsen Riley Faison Rolf Waefler Andrew Jack Ingham P Dwag Jason Kevin Davis Franco Tejero Klasseh Khornate Richard Payne Witek Mozga Brandon Smith Jan Lukas Kiermeyer Ralph Sato Kischel Nair Carsten Milkau Keith Kevelson Christoph Hipp Witness Forest Roberts Abd-alijaleel Laraki Anthony Bruent-Bessette Samuel Gronwold Tyler Bennett christopher careta Troy R Katy Lap C Niltiac, Stealer of Souls Jon Daivd R meh Tom Noa Overloop Jude Khine R3factor. Jasmine Soni L
----------------------------------------
💪 If you would also like to support this channel and have your name in the video description, then you could become my patron here / blackpenredpen

Пікірлер
  • We're no strangers to love You know the rules and so do I A full commitment's what I'm thinking of You wouldn't get this from any other guy I just wanna tell you how I'm feeling Gotta make you understand Never gonna give you up Never gonna let you down Never gonna run around and desert you Never gonna make you cry Never gonna say goodbye Never gonna tell a lie and hurt you We've known each other for so long Your heart's been aching, but You're too shy to say it Inside, we both know what's been going on We know the game and we're gonna play it And if you ask me how I'm feeling Don't tell me you're too blind to see Never gonna give you up Never gonna let you down Never gonna run around and desert you Never gonna make you cry Never gonna say goodbye Never gonna tell a lie and hurt you Never gonna give you up Never gonna let you down Never gonna run around and desert you Never gonna make you cry Never gonna say goodbye Never gonna tell a lie and hurt you (Ooh, give you up) (Ooh, give you up) Never gonna give, never gonna give (Give you up) Never gonna give, never gonna give (Give you up) We've known each other for so long Your heart's been aching, but You're too shy to say it Inside, we both know what's been going on We know the game and we're gonna play it I just wanna tell you how I'm feeling Gotta make you understand Never gonna give you up Never gonna let you down Never gonna run around and desert you Never gonna make you cry Never gonna say goodbye Never gonna tell a lie and hurt you Never gonna give you up Never gonna let you down Never gonna run around and desert you Never gonna make you cry Never gonna say goodbye Never gonna tell a lie and hurt you Never gonna give you up Never gonna let you down Never gonna run around and desert you Never gonna make you cry Never gonna say goodbye Never gonna tell a lie and hurt you

    @redsurfer_255@redsurfer_255 Жыл бұрын
    • I have to pin this!

      @blackpenredpen@blackpenredpen Жыл бұрын
    • @@blackpenredpen you didn't have too

      @stevenwade147@stevenwade147 Жыл бұрын
    • @@stevenwade147 yeah... No, he actually had to

      @sylbeth808@sylbeth808 Жыл бұрын
    • @@stevenwade147 He was actually required by law to pin that... sorry.

      @kenshi_cv2407@kenshi_cv2407 Жыл бұрын
    • @Pooshan HalderChess this is one of the best ways I've ever been rickrolled ngl

      @sylbeth808@sylbeth808 Жыл бұрын
  • i can never get over how he switches between markers so effortlessly

    @mattchu3719@mattchu3719 Жыл бұрын
    • I was thinking the same brooo

      @Judg1ment@Judg1ment3 ай бұрын
    • He has a tutorial on it. Its really easy actually.

      @david4649@david4649Ай бұрын
  • omg how he cleaned the board with his will at 5:24 that's so nice

    @hellbowe.@hellbowe. Жыл бұрын
    • Thanks 😆

      @blackpenredpen@blackpenredpen Жыл бұрын
    • He didnt..its editing

      @pratheekreddy8912@pratheekreddy8912 Жыл бұрын
    • @@pratheekreddy8912 r/woooosh

      @BiscuitZombies@BiscuitZombies Жыл бұрын
    • @@pratheekreddy8912 u didnt get the joke apparently 😂

      @ajkanver9301@ajkanver9301 Жыл бұрын
    • @@ajkanver9301 Have u heard of sarcasm?

      @pratheekreddy8912@pratheekreddy8912 Жыл бұрын
  • This would be a great way to introduce the cyclotomic polynomials.

    @davidblauyoutube@davidblauyoutube2 жыл бұрын
    • I actually forgot about it 😆

      @blackpenredpen@blackpenredpen Жыл бұрын
    • Yey, I was thinking the same thing while he was solving the quintic.

      @jksmusicstudio1439@jksmusicstudio1439 Жыл бұрын
    • Can you please elaborate?

      @createyourownfuture5410@createyourownfuture5410 Жыл бұрын
    • @@createyourownfuture5410 cyclo = cycle = circle, tomic = cut. Cyclotomic polynomials are those that have roots that are evenly spaced on the unit circle in the complex plane (and oriented to line up with the real number 1 as a solution) that no other cyclotomic polynomial of lesser degree has. So the first cyclotomic polynomial is x -1 = 0. The second splits the complex unit circle in two, so that would be x^2 = 1 for x = {-1, 1}, but 1 is already a root, so it's (x^2 - 1) / (x - 1) = 0, or x + 1 = 0. The third cyclotomic polynomial has three roots evenly spaced around the unit circle, but nix x=1, so that's x^2 + x + 1 = 0. The fourth cyclotomic has 4 roots evenly spaced, but x = {-1, 1} are already taken by the second and first cyclotomics, respectively, so it's a polynomial whose roots are {-i, i}, or x^2 + 1 = 0. The p-th cyclotomic polynomial (where p is prime) is always in the form sum (n=0 to p-1) x^n. See if you can prove why. The nth cyclotomic polynomial is always in the form x^n - 1 / (product ( j divides n ) j-th cyclotomic polynomial).

      @chx1618@chx1618 Жыл бұрын
    • @@chx1618 I don't understand some things but thanks anyways!

      @createyourownfuture5410@createyourownfuture5410 Жыл бұрын
  • In the quintic equation, the polynomial can also be factorised as (x³ + 1)(x² + x + 1) = 0 and these two are very simple to solve

    @mith_jain_here@mith_jain_here Жыл бұрын
    • LOL. i found also (x+1)(x^4+x^2+1)= 0. The 2 equations are correct but what is the connection between the 2 ??? ^^^....

      @vincentdescharmes7897@vincentdescharmes7897 Жыл бұрын
    • He literally said it in the video that you can solve the same by factorising, but since he already used it earlier in the video, he wanted to use a differe t meathod

      @annoyingbroccoli3939@annoyingbroccoli3939 Жыл бұрын
    • @@annoyingbroccoli3939 -- He should *not* have used a different method in the video, because it clashes with the others, and it is needless.

      @robertveith6383@robertveith6383 Жыл бұрын
    • ​@@vincentdescharmes7897 the relation between both is the self factorization who utilizes the roots e always be products of (x-root).

      @TheLukeLsd@TheLukeLsd Жыл бұрын
    • @@vincentdescharmes7897 All these equations have solutions equal to 6th roots of 1. The different factorizations of the equation are linked to the different factorizations of the cyclic group Z/6Z.

      @fuxpremier@fuxpremier Жыл бұрын
  • Actually you can generalize the method of the quintic equation for all degrees of that kind of equation: x^n+x^(n-1)+...+x+1=0 | *(x-1)/=0 => x^(n+1)-1=0 And now calculate all roots of unity for k=1,...,n (and without k=0 of course).

    @novidsonmychanneljustcomme5753@novidsonmychanneljustcomme57532 жыл бұрын
    • Yes, that's why he showed the method.

      @danielyuan9862@danielyuan9862 Жыл бұрын
    • Or you can use partial sum of a geometric series formula: ∑[𝑘=0..𝑛] 𝑥ᵏ = (𝑥ⁿ⁺¹ − 1) / (𝑥 − 1) which is equal to iff the numerator is zero but the denominator is not. So, the solutions are all (𝑛+1)ᵗʰ roots of unity except the unit itself. Which is basically the same method.

      @max.caimits@max.caimits Жыл бұрын
    • Yeah i was like why he didnt use it on 4th degree equation, but glad he didnt, had forgotten the symetric method

      @vitordegasperisilva3432@vitordegasperisilva3432 Жыл бұрын
    • I found that too. You always learn something in maths.

      @Christian_Martel@Christian_Martel Жыл бұрын
    • yes!

      @alexting827@alexting82711 ай бұрын
  • Beautiful! The solutions to each equation were all the (n+1)'th roots of unity (except 1). A little hard to see the pattern, but the last one revealed it spectacularly.

    @pseudo_goose@pseudo_goose2 жыл бұрын
    • 1 is literally a root of unity lmao

      @ffc1a28c7@ffc1a28c7 Жыл бұрын
    • @@ffc1a28c7 I mean to say that 1 is one of the roots of unity but is excluded from the set of solutions. The solutions are all the roots of unity except 1.

      @pseudo_goose@pseudo_goose Жыл бұрын
  • Level 1: anyone can understand this Level 2: *MAXIMUM CONFUSION UNLOCKED*

    @alihesham8167@alihesham816710 ай бұрын
    • True tho

      @ritwikgossain@ritwikgossain4 ай бұрын
  • I really wonder to see how you handle different colour pens in a single hand

    @velmurugan-he5mr@velmurugan-he5mr Жыл бұрын
  • The shirt says algebra in arabic 🚬💀☕

    @aboal-fuad16yearsago55@aboal-fuad16yearsago552 жыл бұрын
    • whats with the emojis

      @jay8762@jay87622 жыл бұрын
    • @@jay8762 mood

      @aboal-fuad16yearsago55@aboal-fuad16yearsago552 жыл бұрын
    • @@aboal-fuad16yearsago55 nice

      @jay8762@jay87622 жыл бұрын
    • Yes Arabic

      @aymangamingtgp9084@aymangamingtgp90842 жыл бұрын
    • That's icy

      @evanfortunato2382@evanfortunato23822 жыл бұрын
  • In Taiwan, Asia, we have to complete the above knowledge in three years of high school. Although mathematics is very interesting, the pressure of the exam often makes me breathless

    @user-qp6hh7su3k@user-qp6hh7su3k Жыл бұрын
  • One of the last roots of the last equation is -1,since it is an inverse relationship with an odd degree. The resulting quartic equation can be solved by using the method of solving inverse relations.

    @siavashghazisaidi8338@siavashghazisaidi8338 Жыл бұрын
  • In quintic you can also factor (x+1). Or you can solve all five of them by multiplying (x-1) as shown in the last one.

    @user-gm5ey8wp6b@user-gm5ey8wp6b Жыл бұрын
  • Now for Level 0: 1=0 Try to solve that one

    @racemaniak2000@racemaniak20002 жыл бұрын
    • If 1=0 x⁰=0 x€R

      @thedarkslayer9475@thedarkslayer94752 жыл бұрын
    • Empty set

      @oguzhantopaloglu9442@oguzhantopaloglu94422 жыл бұрын
    • no solution

      @nick46285@nick462852 жыл бұрын
    • Just call 1 or 0 a variable and you're done.

      @racemaniak2000@racemaniak20002 жыл бұрын
    • level zero would be x^0 = 1, so yeah math still works

      @KdEAG1112@KdEAG11122 жыл бұрын
  • For the quartic equation after dividing by x^2 my first instinct was to let x= cos@ + isin@, so I could then get x + 1/x to be 2cos@ and x^n + 1/x^n to be 2cosn@. After which I got a hidden quadratic, found a few values of @ and put it back into my original substitute. I do think your way was cleaner since I did need a good calculator to keep things in exact form.

    @tywad8697@tywad86972 жыл бұрын
    • The cos theta method won't work everytime if the roots are greater than one then the method will fail to work It's a nice trick though If its given in the question that x^2 + y^2 is equal to one then you can use it as y = cos and x = sin

      @warriorwizard6039@warriorwizard6039 Жыл бұрын
  • Why it is difficult? n-th equation is : (X^(n+1)-1)/(x-1)=0 So we need to find all roots of X^(n+1)=1, except x=1., or to find all roots of power n of 1. It could be done easily in exponential form on complex plane. cos(2*pi*k/n)+i*sin(2*pi*k/n) where 0

    @anatolykatyshev9388@anatolykatyshev93889 ай бұрын
  • I like the surprisingly simple solution for the quintic (if trig functions qualify as simple).

    @BruceMardle@BruceMardle Жыл бұрын
  • I barely understand this but it's still fun to learn something. I love your videos and they are so well done.

    @Pearking_@Pearking_ Жыл бұрын
    • bruh

      @thuglife1219@thuglife1219 Жыл бұрын
    • ​@@thuglife1219 'sup cuh

      @whannabi@whannabi Жыл бұрын
    • @@thuglife1219 Sup thug

      @hygu2647@hygu2647Ай бұрын
    • @@thuglife1219 sup thug

      @aarav1919@aarav1919Күн бұрын
  • I love how you casually hold a pokeball while solving difficult equations

    @asuncian8557@asuncian8557 Жыл бұрын
    • There's a microphone in it

      @jrntrfanboii@jrntrfanboii Жыл бұрын
    • everything until x^6 is school curriculum tho

      @amirnuriev9092@amirnuriev90929 ай бұрын
    • Those are not difficult at all.

      @samueldeandrade8535@samueldeandrade85357 ай бұрын
    • 🤓

      @chillboy.x@chillboy.x7 ай бұрын
    • ​@@amirnuriev9092lol no. I mean in some countries maybe, but most stop at x^3

      @david4649@david4649Ай бұрын
  • Great video as always! I wish you would have added just one thing in the end and drew a circle to show the 6th roots of 1, its a really great visual connection for complex numbers.

    @onradioactivewaves@onradioactivewaves Жыл бұрын
  • My first thought was use i for the first ones but you found another way, amazing!

    @jaycash4381@jaycash4381 Жыл бұрын
  • Each polynomial is actually just a geometric series, the reason he multiplied by (x-1) for the Quintic is because of the geometric sum formula. Sum x^r from r=0 to r=n equals (x^(n+1)-1)/(x-1). So infact each and every one of this polynomials could have been multiplied by (x-1) and then solved very easily by getting the nth root of unity. In general a polynomial sum x^r, r=0 to n, i.e. x^n + x^n-1 + ….. + x +1 = 0 can be multiplied by (x-1) to obtain x^n+1 -1 =0 to then get the nth roots of unity

    @Hazza2@Hazza22 жыл бұрын
    • Thank you so much, I have this question to many mathematics teachers and non was able to give me a sound explanation. Finally you did it for me. Thanks 👍🙏

      @mputuchimezie7966@mputuchimezie79662 жыл бұрын
    • Also don't forget to exclude x=1 from the solutions set as we multiplied by (x-1) and introduced the extraneous root

      @hiimgood@hiimgood Жыл бұрын
    • You are an absolute legend bro, thanks, I only have one question, for the quintic, when you multiply by (x-1) on both sides, the quintic turns into just (x^5-1)right? Because before, the partial sum for geometric series was (x^5-1)/(x-1) so why did he write x^6-1? Shouldn't it have been x^5-1? Sorry i'm still learning

      @farhansadik5423@farhansadik54233 ай бұрын
  • this is so cool omg i noticed how we got some interesting roots of unity in the x^3 + x^2 + x + 1 case thats such a beautiful connection!!!

    @weasel6843@weasel6843 Жыл бұрын
    • Glad you like it!

      @blackpenredpen@blackpenredpen Жыл бұрын
    • @@blackpenredpen i am not that advanced, just wanted to know how you get 1 over 4 in the quadratic part

      @niccolopaganini7324@niccolopaganini7324 Жыл бұрын
  • Great video. It's interesting how the quartic was actually the harder than the quintic.

    @henrytang2203@henrytang2203 Жыл бұрын
    • The quartic can also be solved by the method he used in the quintic, it’s just that he used different methods.

      @GRBtutorials@GRBtutorials Жыл бұрын
  • The solution to the quartic equation was very nice and creative, I love seeing quadratics in something weird

    @chaiotic@chaiotic Жыл бұрын
  • Also, x⁴+x³+x²+x+1 can be factored as (x²+φx+1)(x²+Φx+1); where φ and Φ are the Golden ratios, (1±√5)/2, the solutions to x²-x-1=0

    @josevidal354@josevidal354 Жыл бұрын
    • this is cheating

      @Annihillation@Annihillation Жыл бұрын
    • ["Transcending dimensions" (Jacob's Ladder 🪜)/ 0-5th dimensions corrected & clarified] by C. M. Elmore 2D shape-name or 3D shape-name for determining 4D end-shape and 5D end-shape: (2D 'circle' vs. 3D 'sphere', in this case) 🆗️ Earth IS a 4D 'circle' (2D shape-name); a "quaternion". 🚫 Earth IS NOT a 4D 'sphere' (3D shape-name); a "hypersphere" (lit. 5D/contradictory). 🆗️ 2D 'circle' 🚫 2D 'sphere' contra. 🚫 3D 'circle' contra. 🆗️ 3D 'sphere' 🆗️ 4D 'circle' (2D shape-name) = 4D end-shape "quaternion". 🚫 4D 'sphere' (3D shape-name) = contradictory 🚫 5D 'circle' (2D shape-name) = contradictory 🆗️ 5D 'sphere' (3D shape-name) = 5D end-shape "hypersphere" 2D shape-name for determining 4D end-shape. 3D shape-name for determining 5D end-shape. "Evens and Odds", transcendentally speaking. 0D: point 🔘 1D: length/line 2D: shape-name + L/W "circle/flat earth". 3D: shape-name + L/W + depth "sphere/globe earth". 4D: shape-name + L/W/D + time(flow); current, 'contingent' (not simulated) 4D 'circle' "quaternion" earth. 5D: (H1; hypersphere) Google 'quaternion' stereographic video/images/info to see for yourself. "we're 4D?" -me, "🔫 always have been" -also me.

      @ready1fire1aim1@ready1fire1aim1 Жыл бұрын
    • @@Annihillation how so? There's a reason we have a specific symbol for the golden ratio, it appears in nature and clearly math cares about it. If we are able to do u-substitutions, how is this any different? Just substitute φ for (1+√5)/2

      @goombacraft@goombacraft Жыл бұрын
    • how come

      @loland1231@loland1231 Жыл бұрын
    • @@Annihillation no its math

      @dadutchboy2@dadutchboy2 Жыл бұрын
  • 2:48 Although it's obvious, you should briefly mention that x cannot be equals to 0

    @gab_14@gab_14 Жыл бұрын
    • True

      @danielyuan9862@danielyuan9862 Жыл бұрын
    • lol

      @levihuerta9393@levihuerta9393 Жыл бұрын
    • I am failing to see how x can not be zero here. Care to share?

      @kruksog@kruksog Жыл бұрын
    • @@kruksog it says that the left part = 0, so there's only a few Xs that verify this equation. if u replace X by 0, it is not equal to 0, so the equation is not true, so its impossible. hence, X is not equal to zero

      @ahrizpotheure963@ahrizpotheure963 Жыл бұрын
    • @@kruksog and by the way the number of Xs that verify this equation is equal or less than 4, because if we call the left part P, a polynom, deg(P) = 4.

      @ahrizpotheure963@ahrizpotheure963 Жыл бұрын
  • It shall be noted that when taking the six roof we should account for plus or minus but since the solutions lie on the unit circle the -e^(pi/3)I and the rest of the other negative values will just correspond to another value with a different angle theta. For example e^ipi=-1 but -e^ipi=1 which corresponds to n=0 but was discarded since it wasn’t a solution of the original equation since we multiplied by an extra factor (x-1). And similarly for e^(ipi/3) corresponds to e^(4ipi/3).

    @moeberry8226@moeberry8226 Жыл бұрын
  • For n th order problem the solution will be vertices of n+1 th order regular polygon inscribed in a unit circle, with one vertice being on 1.

    @kunalchakraborty3037@kunalchakraborty30372 жыл бұрын
  • Hi tnx for the great content you make. I've learned so so much in here Ican't even thank you enough. Can you plz make a Fourier transform marathon as well? or Fourier series marathon? thank you so much

    @lionskenedi4247@lionskenedi4247 Жыл бұрын
  • You should note that 0 isn’t a root of the equation when you divide by x for transformation to be equivalent though.

    @MisterIncog@MisterIncog Жыл бұрын
  • it would be nice to have a drawing diagram of the 6 roots of unity to complete the nice presentation, Thank You :)

    @edwardromana@edwardromana2 жыл бұрын
  • Calculus by substitution. Brilliant... I haven't had to do that for 10 years. Nice work.

    @accountnamewithheld@accountnamewithheld Жыл бұрын
  • I solved the last problem in this way.I can't speak English so I only write formulas. ‪ 𝒙⁵ +‪ 𝒙⁴ + 𝒙³ +‪ 𝒙² + 𝒙 + 1 = 0 ‪ 𝒙⁶ - 1 = 0 (‪ 𝒙 ≠ 1) (‪ 𝒙³ + 1)(‪ 𝒙³ - 1) = 0 (‪ 𝒙 + 1)(‪ 𝒙² - ‪𝒙 + 1) (‪ 𝒙 - 1)(‪ 𝒙² + ‪𝒙 + 1) = 0 ∴ ‪ 𝒙 = -1, (1±√3𝒊)/2 , (-1±√3𝒊)/2 , (‪ 𝒙 ≠ 1)

    @KeikyuTobuLine_1367F@KeikyuTobuLine_1367F Жыл бұрын
    • keep writing formulas, cause you're writing poems

      @Annihillation@Annihillation Жыл бұрын
    • I wonder how did u write that "x"

      @82h4dheu6@82h4dheu6 Жыл бұрын
  • Correction: the 4th level will be a quartic equation, not a quadratic equation (as mentioned in the description)

    @shurjoaunibar@shurjoaunibar2 жыл бұрын
    • He said quartic in the video.

      @stumbling@stumbling Жыл бұрын
    • @@stumbling but he said quadratic in the description, which may not be a problem for you since you don't read them, but it still needs to be fixed

      @danielyuan9862@danielyuan9862 Жыл бұрын
  • Well the first step for the quintic would be to check the galois group and see if it is solvable. If not you could use Briggs radical or elliptic functions.

    @aubertducharmont@aubertducharmont Жыл бұрын
  • I used the last method for the cubic onwards. The set of solutions for the n degree polynomial, call it X_n, are the numbers of the form cis(2×k×pi/(n+1)), k going from 1 to n

    @marcushendriksen8415@marcushendriksen8415 Жыл бұрын
  • The fact he can hold two markers and so easily switch between the two while also holding a Poké ball in his other hand and explain his process is astounding to me

    @alexmyska7244@alexmyska72448 ай бұрын
    • I KNOW RIGHT

      @Wither_AnimationsTCO@Wither_AnimationsTCOАй бұрын
  • if we have these types of maths teachers nobody hates maths 🙏❤ LOVE FROM INDIA

    @ercop215@ercop215 Жыл бұрын
  • The method used for que quintic equation can be used for all type from grade 1 to infinite.

    @gplgomes@gplgomes Жыл бұрын
  • Thanks for this good results 😊

    @rachidmsmdi6433@rachidmsmdi64332 жыл бұрын
  • x^6-1=0 can be written (x^3+1).(x^3-1) =0 and then we have all the local methods to solve the 5th deg polynomial. We can apply then Cardan's rule too I guess, he used the Complex-Euler geometry and brought in e, pi! Very interesting 🔥

    @pad-dydrummer5929@pad-dydrummer5929 Жыл бұрын
    • Unlike quadratic, cubic, and quartic polynomials, the general quintic cannot be solved algebraically in terms of a finite number of additions, subtractions, multiplications, divisions, and root extractions, as rigorously demonstrated by Abel (Abel's impossibility theorem) and Galois.

      @thuglife1219@thuglife1219 Жыл бұрын
  • I like solving x^(1/6)=1 graphically, much easier and more pleasing to eye

    @maxrs07@maxrs072 жыл бұрын
  • I like the way you handle two markers at the same time

    @lexxryazanov@lexxryazanov Жыл бұрын
  • You can use the trick at the end generally. Then you get the general solution of x^n + x^(n-1) + ... + x^1 + 1 = 0 is x_j = exp(j* 2π/(n+1) * i) with j = 1,...,n It is also possible to find this solution graphically, if you use the unit circle in the complex plane and divide the full angle in the equal parts and add the unit "vectors".

    @jewi71@jewi71 Жыл бұрын
  • Thank you for all your videos, I try to understand as much as I can but I'm kinda to young for this xD But I can't wait to see all of this in my future classes

    @fikupo9628@fikupo96282 жыл бұрын
    • How old r u

      @NiTeLightYears@NiTeLightYears Жыл бұрын
    • @Clash Royale Montages true that

      @NiTeLightYears@NiTeLightYears Жыл бұрын
  • Also, x == -1 is a solution to all of the ones that start with an odd power. So divide by (x+1) and you';ve simplified down one order.

    @starpawsy@starpawsy Жыл бұрын
    • the last equation was complicated for no reason

      @RithwikVadul@RithwikVadul11 ай бұрын
    • ​@@RithwikVadul what are you talking about? The level of difficulty is actually pretty much the same. The solution for 1+x+...+x^n = 0 is simply x = e^{2πk/(n+1)}, with k going from 1 to n. That's it. You people were rickrolled.

      @samueldeandrade8535@samueldeandrade85357 ай бұрын
  • 🤔Started to see the pattern with the cubic solution being i, i^2, and i^3; and I was kind of expecting it to end with a general solution. It wasn't quite the general solution but did end up being a general method. The n+1th roots of unity minus 1.

    @BetaKeja@BetaKeja Жыл бұрын
  • Wait, so can we generalize the last method to work for polynomial equations of any order?

    @ThreeEarRabbit@ThreeEarRabbit2 жыл бұрын
    • Yes

      @blackpenredpen@blackpenredpen2 жыл бұрын
    • @@blackpenredpen So, for 4-th power roots can be e^(i*Pi*N*2/5) where N=1,2,3,4 ? Does that mean that you just skip a proof that 5-th equation hasn't real roots and just solve in complex?

      @user-yl8rs9ci7f@user-yl8rs9ci7f Жыл бұрын
  • For the last one we can also just factorise by x^3 the 3 first therms and then everything goes by itself

    @yahya8234@yahya823411 ай бұрын
  • Just asking: Do you plan on doing additional mathematics for O'Levels?

    @HELLOhi16007@HELLOhi16007 Жыл бұрын
  • For last equation X^5+x^4+x^3+x^2+x+1 X³(x²+x+1)+x²x+1 (X²+x+1)(x³+1)=0 -1,omega,omega²,-omega, -omega² Can we Do like this

    @mallika.k6049@mallika.k60492 жыл бұрын
    • Please reply

      @mallika.k6049@mallika.k60492 жыл бұрын
    • Should be yes

      @applealvin9167@applealvin91672 жыл бұрын
    • And x³ + 1 can be factorized as (x + 1)(x² - x + 1)

      @refnaldiazwirman2490@refnaldiazwirman24902 жыл бұрын
    • Excellent, where omega is one of the complex cube root of unity.

      @chikezienestor3394@chikezienestor3394 Жыл бұрын
  • For the quintic(if you do by grouping) x⁴(x + 1) + x²(x + 1) + 1(x + 1) = 0 (x + 1)(x⁴ + x² + 1) = 0 x = -1 x² = - 1 ± sqrt(3)i/2 x = ±sqrt(- 1 ± sqrt(3)i/2)

    @contemporarilyancient@contemporarilyancient Жыл бұрын
  • The solution for the 4th eqn is so cool!

    @Annihillation@Annihillation Жыл бұрын
  • Bro, you made me fall in love with maths again 😁

    @petteripan2658@petteripan2658 Жыл бұрын
  • That quintic was very elegant. As long as you grasp the Euler Identity, it’s deceptively simple for a very intimidating equation. One might even call it genius

    @fanamatakecick97@fanamatakecick972 жыл бұрын
    • 🐵🤓🐵🤓

      @user-en5vj6vr2u@user-en5vj6vr2u2 жыл бұрын
    • Is this taught in some weird way somewhere? As far as I would've thought, until I saw it being mentioned this way multiple times throughout the comment section, referring to an understanding of polar form complex numbers as "grasp[ing] the Euler identity" itself shows a lack of understanding. This video has nothing to do with the Euler identity. It's like watching a random video on geometry and being like "oh yeah Pythagoras, got it."

      @alansmithee419@alansmithee4192 жыл бұрын
    • @@alansmithee419 What are you talking about? e^πi = -1 is *exactly* what this video utilizes

      @fanamatakecick97@fanamatakecick97 Жыл бұрын
    • @@fanamatakecick97 The polar form is not defined based on Euler's identity, rather Euler's identity is a single case of the more general polar form for values at unity. Perhaps I should revise my original comparison. It's more like being asked if you know what prime numbers are and replying "yes, I know what 2 is" as if that somehow covers everything. It's an example, yes, but it doesn't define the set.

      @alansmithee419@alansmithee419 Жыл бұрын
    • @@alansmithee419 That’s part of grasping the Euler identity

      @fanamatakecick97@fanamatakecick97 Жыл бұрын
  • 6:18 Caution, 1/𝜑²-4 is negative, so we cannot take the square root so, but you can write i√(4-1/𝜑²) (because 4-1/𝜑² is positive). Same at 6:58 for 𝜑²-4 which is also negative.

    @quark67000@quark67000 Жыл бұрын
    • You use the complex square roots. Anyway, the approach used for the 5th order version can be used for all other orders, and is much simpler.

      @haakoflo@haakoflo7 ай бұрын
  • Wonderful video! 👍👍

    @DrLiangMath@DrLiangMath Жыл бұрын
  • We can use sum of n terms of gp to solve these kinds of polynomial equations and then. We get a equation whose roots we can find by de moivre theorem

    @PiyushPant-gy8sd@PiyushPant-gy8sd6 ай бұрын
  • Remember, when dividing by term with an x (such as x^2), you must make sure that none of the solutions makes that process a division by zero.

    @theevermind@theevermind Жыл бұрын
    • when he divides by x^2, in the equation, 0 can't be a solution because 0^3 + 0^2 + 0 +1 is different from 0 so 0 can't be a solution.

      @iamjanyel@iamjanyel Жыл бұрын
    • No. Just ... no.

      @samueldeandrade8535@samueldeandrade85357 ай бұрын
  • Love your arabic for Algebra shirt

    @user-ut7wi1if9q@user-ut7wi1if9q2 жыл бұрын
    • Thanks.

      @blackpenredpen@blackpenredpen2 жыл бұрын
  • For each equation with n terms (the highest exponent being n-1) the solutions are just the nth roots of unity, excluding unity itself (aka 1).

    @wolfelkan8183@wolfelkan8183 Жыл бұрын
  • 5:24 lets appreciate that cut there

    @narendrasampath3002@narendrasampath3002 Жыл бұрын
    • Haha!

      @blackpenredpen@blackpenredpen Жыл бұрын
  • E=MC^2

    @C0LD-_-D3V1L@C0LD-_-D3V1L2 жыл бұрын
    • we don't do that here.

      @pidro1954@pidro19542 жыл бұрын
    • Einstein spotted

      @Ayush-yj5qv@Ayush-yj5qv2 жыл бұрын
    • physics

      @apotato4873@apotato48732 жыл бұрын
    • applied mathematics, **shudders**

      @1abyrinth@1abyrinth2 жыл бұрын
  • الجبر

    @thedarkslayer9475@thedarkslayer94752 жыл бұрын
  • in the quintic equation- one solution for x can also be -1, idk how to do the method but u can try out that value it works out as 0

    @shreyjain3197@shreyjain3197 Жыл бұрын
    • He just presented -1 as e^(i*pi), note that e^(i*pi) = -1

      @leeyc0@leeyc0 Жыл бұрын
  • the way he switch the marker is so smooth

    @forkey1595@forkey1595 Жыл бұрын
  • The last equation can be solved by another way: x⁴(x+1)+x²(x+1)+x+1=0 (x+1) (x⁴+x²+1)=0 x1=-1 let t=x² t²+t+1=0 this is the second equation, that we solved. But solving by using Euler's formula is beautiful

    @user-pj9sr8yn6l@user-pj9sr8yn6l2 жыл бұрын
    • Sure, but your method is way more intuitive. Nice job!

      @Avighna@Avighna2 жыл бұрын
    • Trouble is then you're taking square roots of the solutions for t, e.g. sqrt(-1/2+isqrt(3)/2) which is unpleasant to say the least. Would also point out that Euler's formula does not appear in this video. Polar representation of complex numbers is not unique to Euler's formula.

      @alansmithee419@alansmithee4192 жыл бұрын
    • he mentions this at 7:16

      @douglaspantz@douglaspantz Жыл бұрын
    • @@alansmithee419 Well yeah, but e^(ipi/3) is the cube root of -1 which is -1, in that way you do use Euler's formula.

      @Avighna@Avighna Жыл бұрын
    • you can also use the method he used for the quintic equation to solve every equation in this video

      @nicename6258@nicename6258 Жыл бұрын
  • What’s about 1+x+x^2+x^3+x^4+x^5+…=0

    @amango5555@amango55552 жыл бұрын
    • I don’t think it ever = 0. Oddly enough.

      @schizoframia4874@schizoframia48742 жыл бұрын
    • The LHS is 1/(1-x), which we know using the geometric series formula. So 1/(1-x) = 0, which has no solution because if u multiply 1-x on both sides you get 1=0

      @Ninja20704@Ninja207042 жыл бұрын
    • I tried the method used in level 5 but with a limit. It doesnt work because the variable im letting approach infinity will only allow integers to plug in. Another problem is I falsely showed 1-1+1-1…=0 by accident. Sorry if i explained poor

      @schizoframia4874@schizoframia48742 жыл бұрын
    • @@Ninja20704 I agree with u but 1+x+x^2…=1/(1-x) , if |x|

      @schizoframia4874@schizoframia48742 жыл бұрын
    • @@schizoframia4874 I mean, if |x|>=1 it doesn't converge, so it's definitely not going to be able to answer an equation.

      @calvindang7291@calvindang72912 жыл бұрын
  • I feel like he made the solutions were wayy more complicated than needed, like i know all of this, but i have never seen anyone solbe it this way

    @boneless70@boneless7010 ай бұрын
  • The first precious knowledge I earned... From your educative channel... Is... 2:40 - 7:00 Quartic = Quadratic

    @IamExeller@IamExellerАй бұрын
  • N Roots of unity, other than unity...

    @divyansharora6788@divyansharora67882 жыл бұрын
    • Yep, with this observation the video would have lasted less than a minute.

      @FromTheMountain@FromTheMountain2 жыл бұрын
  • Try this EXTREME quintic equation 👉 kzhead.info/sun/etOAo7qEpZhuhaM/bejne.html

    @blackpenredpen@blackpenredpen2 жыл бұрын
    • Excuse me sir can you solve my doubt if we write x =y as x/y =1ans if we put the value of x =0 then y =0 but if we put this value of x and y in x/y =1 then we get 0/0 =1 how is it possible. Sir it's my humble request to you that please solve my doubt please please please

      @historywallah--princeshukl619@historywallah--princeshukl619 Жыл бұрын
    • @@historywallah--princeshukl619 x/y=1 only for y≠0

      @Noname-67@Noname-67 Жыл бұрын
    • @@Noname-67 can you send your number please

      @historywallah--princeshukl619@historywallah--princeshukl619 Жыл бұрын
    • Makes sense

      @ritwikgossain@ritwikgossain4 ай бұрын
  • We need part 2!

    @mbapum6363@mbapum63635 ай бұрын
  • When you had x^6-1=0, you could notice that x^6-1 is a difference of squares. Then we have (x^3+1)(x^3-1)=0, factor the sum and difference of cubes, use the zero factor property, and then you have all 5 solutions for x, where we have to exclude x=1 for multiplying by x-1 on both sides.

    @kobalt4083@kobalt40835 ай бұрын
  • Am I missing something on the golden ratio? From Goggle, golden ratio is (1+root (5))/2. The negative of golden ratio is correct. However, the reciprocal of golden ratio seems weird to me.

    @KyoChan19792002@KyoChan197920022 жыл бұрын
    • you can show that 2/(1+sqrt(5))=(sqrt(5)-1)/2 by multiplying the numerator and denominator by sqrt(5)-1. Additionally, since the golden ratio is a solution to the equation: x^2-x-1=0, that means φ^2-φ-1=0, or φ^2=φ+1 If you divide both sides by φ and simplify you get 1/φ=φ-1 =(1+sqrt(5))/2-1 =(-1+sqrt(5))/2

      @philipyao5989@philipyao59892 жыл бұрын
    • Just rationalise the denominator after taking the reciprocal and you’ll get it

      @Ninja20704@Ninja207042 жыл бұрын
  • wait, why not x^3(x^2+x+1)+x^2+x+1 = 0 (x^3+1)(x^2+x+1) = 0 (x+1)(x^2-x+1)(x^2+x+1) = 0 then easy solve by quadratic which is doable without university knowledge

    @nick46285@nick462852 жыл бұрын
    • He said he didnt want to use that method because it would be similar the the cubic eqn earlier.

      @Ninja20704@Ninja207042 жыл бұрын
  • You're basically attempting to write the n-th roots of unity in radical form (which is possible for any root of unity).

    @paulvanderveen4309@paulvanderveen4309 Жыл бұрын
  • these videos remind me of how much i liked doing algebra and calculus in high school

    @MalcolmCooks@MalcolmCooks Жыл бұрын
  • am i the only 17 yo kid stuck at level 2 or

    @FinalMiro@FinalMiro11 ай бұрын
    • Yes you are this is basic stuff

      @N____er@N____er21 күн бұрын
    • Pretty much yea

      @DodgerX@DodgerX3 күн бұрын
    • 13 and stuck on 4, I think so

      @quiladog9302@quiladog9302Күн бұрын
  • Let p(x) = xⁿ⁻¹ + ... + x + 1, n > 1. Then (x-1)p(x) = (x-1)(xⁿ⁻¹ + ... + x + 1) = xⁿ - 1 So the solutions to p(x) = 0 are the complex n'th roots of unity, except 1 itself. Confession: I've seen this before. Like, before there was a bprp YT channel; like before there was YT; like before there was an internet/ARPAnet. Addendum: I really thought you were going to work the last one, the quintic, by grouping, because that would have reduced the problem to one(s) that we've already solved; the fervent quest of every mathematician. x⁵ + x⁴ + x³ + x² + x + 1 = (x+1)(x⁴ + x² + 1) which we know gives x = -1 and x² = ½(-1 ± i√3) ... then go back to your existing video about how to find √(a + bi), to find those last 4 roots of the quintic. . . . or x⁵ + x⁴ + x³ + x² + x + 1 = (x³+1)(x² + x + 1) = (x+1)(x² - x + 1)(x² + x + 1) which gives x = -1 and x = ½(±1 ± i√3) Final note: Please take these remarks as they are intended - additional discussion on your excellent video. In your final problem, you build the bridge needed to get to the remaining infinity of problems in this "sequence." I think you're doing wonderful work here, spreading the fun of math to the YT community. Thanks! Fred

    @ffggddss@ffggddss Жыл бұрын
    • Hi Fred! Thanks for your thoughtful comment, just like always! I mentioned that we could do the quintic by grouping but we did that already for the cubic. And I just wanted to make the last one "awesome", that's why I did it that way! : )

      @blackpenredpen@blackpenredpen Жыл бұрын
    • @@blackpenredpen Yes, I agree that was a good choice. And as I said, by doing that, you actually answered an infinite number of problems in one solution! ;-) And it's good practice to use that strategy of variety in your "lesson plan" for the video, to maximize the use of screen time. Fred

      @ffggddss@ffggddss Жыл бұрын
  • perfect and lovely. thanks

    @kianushmaleki@kianushmaleki Жыл бұрын
  • Somewhat falling into golden ratios got introduced. In algebra class we only solved polynomials by factoring and never went pass polynomials to the 4th degree. How or what class do you take to learn to manipulate the values so well?

    @jonathansjonathan2817@jonathansjonathan2817 Жыл бұрын
  • Find vertical asymptotes of tan(sinx). Of course if you can do it.

    @AhmadKhan-yt3mc@AhmadKhan-yt3mc Жыл бұрын
  • Nice. Using the formula for the sum of a geometric sequence can be used for all of these as X is never equal to 1. Then the solutions are the roots of unity except for 1.

    @stevendouglas4437@stevendouglas4437 Жыл бұрын
  • This video is very satisfying to watch

    @isaachester8475@isaachester8475 Жыл бұрын
  • Very nice!

    @sebastiencote1565@sebastiencote1565 Жыл бұрын
  • Im new to the channel and when i saw the way he switched between different colors by holding two pens in his hands at the same time is just amusing to see haha

    @kyusiv9026@kyusiv9026 Жыл бұрын
  • Thank you master

    @x88.berkay@x88.berkay Жыл бұрын
  • Wow I love the way he is swapping red and black on the board 😍

    @arunsahu3182@arunsahu31829 ай бұрын
  • I remember solving a quintic equation. This is actually a nice way to solve that equation.

    @PrudentialViews@PrudentialViews2 жыл бұрын
    • not all quintic can be solved

      @leeyc0@leeyc02 жыл бұрын
    • @@leeyc0 true but the quintic i solved was solvable

      @PrudentialViews@PrudentialViews2 жыл бұрын
  • I just recently looked into the equation x^n = 1 for any positive integer n. The roots of this equation has some interesting properties many of which you can figure out without actually solving the equation. For example, it is clear that the absolute value is equal to 1. If it were less than one, the value would get smaller and smaller and approach 0 as you multiply up the values and no matter the value of n it will never reach 1 but just have smaller and smaller absolute value as n is higher. If the absolute value is larger than 1 it will spiral out and grow larger and larger and never reach 1 as you increase the powers, so regardless of n it will never be 1. Further, any such equation can be written as (x-r0)(x-r1)(x-r2)... (x-rn) which when multiplied out becomes x^n - (r0 + r1 + r2 + r3... + rn)x^(n-1) + .... and for n > 1 we have this sum equal to 0 so the sum of the roots are always 0. Another interesting result for this particular equation is that if r is a root to the equation so that r^n = 1 then r^j for any integer j is also a root of the same equation this is because (r^j)^n = (r^(nj)) = (r^n)^j = 1^j = 1. So if you go around the unit circle which has all values with absolute value equal to 1 and the first root you encounter (e^((2*pi/n)i)) and we call it r then r^0 = 1 = r0, r^1 = r = r1, r^2 = r2 and so on r^(n-1) = r(n-1) and r^n = 1 = r0 again and it cycles from there since r^(n+j) = r^n r^j = 1 r^j = r^j. Further you can find that if you set L(x) = (1 + x)(1+x^2)(1+x^3)....(1+x^n) then L(r) can be found as follows: x^n - 1 = (x-r0)(x-r1)(x-r2)...(x-rn) is an identity and is valid for all x including x=-1 and plugging that in you get on the left side (-1)^n-1 and on the right side you get n terms of the form (-1 + rj) = (-1)(1 - rj) = (-1)(1 - r^j) so the whole left side is equal to (-1)^nL(r), If n is even (-1)^n = 1 so left hand side is equal to 0 and right hand side is also equal to 0 but when n is odd left side is equal to -1 - 1 = -2 and right hand side is equal to -L(r) so we get L(r) = 2. I. e. (1+r)(1+r^2)(1+r^3)....(1+r^n) = 2 regardless of n so for example the roots of x^241 = 1 is such that the 241 factors together multiply to 2 while the roots of x^2021 is such that the 2021 factors together multiply to precisely 2. and so on. It is easy to verify this for small values of n such as n=3 or n=5. For n = 3 we have r = -1/2 + sqrt(3)i/2 and (1+r)(1+r^2)(1+r^3) = 2. Since the latter factor is also 2 (1 + r^3) = (1 + 1) = 2 we must have that the factors of all roots except r=1 must equal to 1. so (1 + r)(1+r^2) = 1 - we get 1 + r + r^2 + r^3 = 1 + r + r^2 + 1 but the sum of all roots is zero so 1 + r + r^2 = 0 so this is equal to (1 + r + r^2) + 1 = 0 + 1 = 1 as I just stated. I got into these properties when looking at the problem of finding number of subsets of the set (1..2000) which adds up to a multiple of 5. In this problem you look at x^5 = 1 but the findings are more general than that and apply to any prime number n but also to non-prime numbers when you add certain considerations and complications to the general formula for that problem.

    @alfsalte9493@alfsalte9493 Жыл бұрын
  • for the last equation, you can consider it to be sum of a GP and apply the formula for sum of a GP to get the resultant equation as (x^6-1)/x-1=0 where x is not equal to 1.

    @aresyt5054@aresyt50542 ай бұрын
  • Level 4 was so cool!

    @BadChess56@BadChess566 ай бұрын
  • For the second one I like the pq-formula (1/2*p +/- √(1/2*p)² - q)

    @nononoitisi5575@nononoitisi5575 Жыл бұрын
  • Such a convoluted way to solve a quadratic equation

    @randomname9291@randomname9291 Жыл бұрын
  • Fun Fact: (Sum of (x^n ) where n starts from 1,2..) - n will always have (x-1) as it's factor.

    @konoveldorada5990@konoveldorada5990 Жыл бұрын
  • I love how he changes pens so smoothly

    @mnogojakmomak1338@mnogojakmomak1338 Жыл бұрын
  • Funnily enough, I just did an animated 3D graph on Desmos for that exact quadratic, with x as the real part of x, y as the real part of y, z as the imaginary part of y and animating "a" between -1 and 1 as the imaginary part of x. I found the y-intercept at x=-.5,a=sqrt(3)/2 and x=-.5,a=-sqrt(3)/2, as expected.

    @TheJaguar1983@TheJaguar19832 ай бұрын
  • That pokeball is adorable and OMG I JUST SAW KIRBTY!! :D

    @spoopyscaryskelebones3846@spoopyscaryskelebones3846 Жыл бұрын
    • I love that Kirby plush I have one that's exactly the same

      @aioia3885@aioia3885 Жыл бұрын
KZhead