Approximations. The engineering way.

2021 ж. 4 Сәу.
259 193 Рет қаралды

Get the engineering clock/watch here: stemerch.com/collections/cloc...
Engineering Shirt: stemerch.com/collections/fund...
STEMerch Store (everything else): stemerch.com/
Clock explanation (flammable maths video): • The Single Most Import...
Support the Channel: / zachstar
PayPal(one time donation): www.paypal.me/ZachStarYT
Join this channel to get access to perks:
/ @zachstar
►Follow me
Instagram: / zachstar
Twitter: / imzachstar
2D Graphing Software: www.desmos.com/calculator
Thumbnail Design done by @EpicMathTime
Animations: Brainup Studios ( brainup.in/ )
Check out my Spanish channel here: / zach star en español
►My Setup:
Space Pictures: amzn.to/2CC4Kqj
Magnetic Floating Globe: amzn.to/2VgPdn0
Camera: amzn.to/2RivYu5
Mic: amzn.to/35bKiri
Tripod: amzn.to/2RgMTNL
Equilibrium Tube: amzn.to/2SowDrh
►Check out my Amazon Store: www.amazon.com/shop/zachstar

Пікірлер
  • "for calculation purposes, let asume this cow is perfectly round"

    @Hempujonsito@Hempujonsito3 жыл бұрын
    • @@danielyuan9862 Considering the digestive system, isn't a cow more related to a donut?

      @thepiratepeter4630@thepiratepeter46303 жыл бұрын
    • your mum

      @LinhNguyen-my5my@LinhNguyen-my5my3 жыл бұрын
    • let’s assume this cat is a cube

      @lucaokino6776@lucaokino67762 жыл бұрын
    • @@thepiratepeter4630 but aren't there more than one orifice?

      @sleepycritical6950@sleepycritical69502 жыл бұрын
    • @@sleepycritical6950 But the other orifices aren't "tubes"

      @thepiratepeter4630@thepiratepeter46302 жыл бұрын
  • "Approximations" Oh cool "The Engineering way" _oh boi this is gonna be good_

    @Nylspider@Nylspider3 жыл бұрын
    • Google Play Store Search : jumpjump

      @blankblank9621@blankblank96213 жыл бұрын
    • Fun And Surprising Game is here.

      @blankblank9621@blankblank96213 жыл бұрын
    • playtime is short but,

      @blankblank9621@blankblank96213 жыл бұрын
    • only 1 dollar cost is snack cost. This Is Jump Game Adventure. Great BGM And GRAPHIC Is In the Game. Please Enjoy. jumpjump game is Fun.

      @blankblank9621@blankblank96213 жыл бұрын
    • Thank you

      @blankblank9621@blankblank96213 жыл бұрын
  • I'm an engineer I see approximation I click

    @user-uu5xf5xc2b@user-uu5xf5xc2b3 жыл бұрын
    • Same too me!!

      @aashsyed1277@aashsyed12773 жыл бұрын
    • Same for me!!

      @aashsyed1277@aashsyed12773 жыл бұрын
    • and it was just what I expected

      @anneallison6402@anneallison64023 жыл бұрын
  • "Why be right when you can approximate?"

    @RC32Smiths01@RC32Smiths013 жыл бұрын
    • Why get a girlfriend when you can get a proxy mate.

      @livedandletdie@livedandletdie3 жыл бұрын
  • I'm only at 0:16 and I'm already having numerical computing class flashbacks (took that class ten years ago). Netwon Raphson, Regula Falsi, Runge-Kutta. It's all coming back.

    @rentristandelacruz@rentristandelacruz3 жыл бұрын
    • Gauss-Seidel, Picard aaaaah

      @omgmaster9985@omgmaster99853 жыл бұрын
    • Just finished it two weeks ago... AAAHHHHH

      @jpheitman1@jpheitman13 жыл бұрын
    • Bisection method :D

      @Lynx-vi3bi@Lynx-vi3bi3 жыл бұрын
    • I learned FORTRAN in uni when doing this stuff! I'd forgotten I once knew FORTRAN!

      @alexandroskarypidis1891@alexandroskarypidis18913 жыл бұрын
    • Just had this Yesterday 😂

      @moriarteaa4692@moriarteaa46923 жыл бұрын
  • Mathematicians: We need exact solutions! Engineers: Nah, "close enough" is good enough.

    @kazuhoshiinoue2695@kazuhoshiinoue26953 жыл бұрын
    • Right! We first determined what percentage is acceptable, then we stopped iterating. Btw, they went to the moon with calculating with a slide ruler, only 3 decimals, with estimation, 4.

      @billferner6741@billferner67412 жыл бұрын
    • But those numbers are irrational, we will never have an exact solution, the estimation becomes synonymous with the exact value for any actual application and for anything abstract we just keep it as is, sqrt(a)

      @justyourfriendlyneighborho903@justyourfriendlyneighborho90310 ай бұрын
    • Applied Mathematicians: We need to get exactly close enough!

      @DaTimmeh@DaTimmeh9 күн бұрын
  • The Forbidden Math

    @JTCano42@JTCano423 жыл бұрын
  • Ah, the fundamental theorem of engineering.

    @theoreticalphysics3644@theoreticalphysics36443 жыл бұрын
    • 2 = e = π =3 this is the first thing you learn in engineering college

      @Ryanisthere@Ryanisthere3 жыл бұрын
    • @@Ryanisthere haahhahahhahhahha awesome😁😁😁😂😂😂 engineer for ever😎😎😎

      @vendettaanonimous5545@vendettaanonimous55453 жыл бұрын
    • and sin(x) = x 😂😂

      @vendettaanonimous5545@vendettaanonimous55453 жыл бұрын
    • @@Ryanisthere i don't quite get these jokes. Aren't engineers got to be precise so that buildings don't fall off and circuits don't burn? Using pi=3 would be a fukin travesty, right?

      @black_jack_meghav@black_jack_meghav3 жыл бұрын
    • @@black_jack_meghav r/woooosh

      @Ryanisthere@Ryanisthere3 жыл бұрын
  • Math never fails to surprise me, I could not even think such a thing could exist

    @adityachk2002@adityachk20023 жыл бұрын
    • The original special case for square roots is called "The Babylonian Method" because it was invented by a Greek mathematician living in Egypt. I think it was named by an engineer who decided "Greece and Egypt ≈ Babylon"

      @Simpson17866@Simpson17866Ай бұрын
  • We’re doing this in my calc class rn and I swear to god you explain it better than my professors

    @Cralcker@Cralcker3 жыл бұрын
  • Please keep making these so I can make it through college.

    @davidbeckham2715@davidbeckham27153 жыл бұрын
  • dude I was just expecting to get some stuff like pi = 3 = 3 or g^2 = 10 or something like that, but I actually learned a lot!

    @mastershooter64@mastershooter643 жыл бұрын
  • first law of engineering: everything is linear

    @aenesturan@aenesturan3 жыл бұрын
    • Sinx=x

      @fgvcosmic6752@fgvcosmic67522 жыл бұрын
    • @@fgvcosmic6752 0?

      @user-qw9yf6zs9t@user-qw9yf6zs9t2 жыл бұрын
  • That square root approximation is elegantly simple. Each guess is just the average of the previous guess, and the number over that previous guess. As you approach the root, it becomes the average of the root and the number over the root (number over root is the root). So beautiful

    @iangolsby8471@iangolsby84713 жыл бұрын
    • Good observation!

      @tyhilton6427@tyhilton6427 Жыл бұрын
  • That's a really cool formula

    @rbpict5282@rbpict52823 жыл бұрын
  • We ❤ approximations! Honestly, sometimes wanting an exact solution is lazy. People don't realize how much math goes into designing numerical methods and proving their convergence and stability.

    @benthayermath@benthayermath3 жыл бұрын
    • Most square roots can only be approximations since they are irrational. There is no exact solution unless you write with the square root symbol. If you want to use just digits it is going to an approximation. To anyone who says “just use a calculator”, guess what? The calculator uses an algorithm to find the square root up to the number of digits the calculator can work with.

      @bobh6728@bobh67282 жыл бұрын
  • I did a Bachelors thesis partly on this, when I finally got how it worked when I saw it, it was almost magical.

    @kyrond@kyrond3 жыл бұрын
  • Nice Clock and Watch, where can I get one of deeze, Zach? :^D

    @PapaFlammy69@PapaFlammy693 жыл бұрын
    • Hi Papa flammy

      @ViratKohli-jj3wj@ViratKohli-jj3wj3 жыл бұрын
    • Papa

      @Raren789@Raren7893 жыл бұрын
    • father

      @tathagatmani@tathagatmani3 жыл бұрын
    • Daddy

      @sharpman5772@sharpman57723 жыл бұрын
    • I would highly recommend them you can get them on stemerch.com :) papa flammy

      @youssofa.8208@youssofa.82083 жыл бұрын
  • Interesting topic! This reminds me on programming in BASIC interpreter 40 years ago. At that time the value of PI was not implemented, the solution was : 4*arctan(1), which gave PI with the accuracy of devise's BASIC.

    @billferner6741@billferner67412 жыл бұрын
  • I had to use the newton raphson method in my engineering career a few years ago to approximate a function (solving a Civil Engineering equation backwards with multiple square roots in weird places) that otherwise converges on a few nonreal/negative answers and one real, positive one I was looking for. I never thought I would actually apply it in my life when I learned it, but it felt so cool to have a real world application for it! Made me realize that weird, theoretical math part of my degree wasn't quite such a waste of time after all!

    @jacktorborg9862@jacktorborg98623 жыл бұрын
  • Zach : It's possible to get stuck in an infinite loop. Float error : IT'S MY TIME TO SHINE

    @foxtrot8325@foxtrot83253 жыл бұрын
  • The effort put into these videos is just amazing. And the educational content, truly first class. Keep up the good work Zach!

    @FranzBiscuit@FranzBiscuit3 жыл бұрын
  • We’re literally on this exact topic in calculus right now

    @braxtonclaflin1818@braxtonclaflin18183 жыл бұрын
  • Really cool to see these real world applications- the way you teach math makes it fun and interesting!

    @sameerkamath1239@sameerkamath12393 жыл бұрын
  • What a great video 👌 It would have been such a great starting point for me a while back when I was writing GPU algorithms for fast square and cube roots of float 32 and float 64 values. Managed to get them super fast combining Taylor series expansions, the power laws and the good old Newton raphson iteration. If I remember correctly, about 3ns to compute cube root to fp64 precision.

    @ssquarkgaming1405@ssquarkgaming1405 Жыл бұрын
  • Absolutely beautiful. I learned that stuff year ago at the university, but you described it so so much better.

    @EmperorSaistone@EmperorSaistone3 жыл бұрын
  • Thanks a lot for the amazing info dude, it's satisfying to get stuff explained by you

    @C0MPLEXITY@C0MPLEXITY3 жыл бұрын
  • Very awesome video Zack.. Keep up the good work..

    @AmitKumar-xw5gp@AmitKumar-xw5gp3 жыл бұрын
  • Thanks for the timely video and inspiration! Just finished related rates in Stewart's calculus and the literal next section is linear approximations. Loved this video and can't wait to be thoroughly confused by that coming numerical analysis video lol

    @MrMoore0312@MrMoore03123 жыл бұрын
  • This is so incredibly helpful. I literally had a numerical analysis assignment last week where we had to use Newton Raphson

    @caelank5544@caelank55443 жыл бұрын
  • Great video! I was wondering if you would mention the Quake fast inverse square root and then bam! Awesome. Keep up the great work!

    @vincentdavis8960@vincentdavis89603 жыл бұрын
  • quality content as always

    @moncefkarimaitbelkacem1918@moncefkarimaitbelkacem19183 жыл бұрын
  • Quickly becoming my favorite youtube channel!

    @machinedgod@machinedgod3 жыл бұрын
  • A great video explaining the fast inverse square root - kzhead.info/sun/o5yuj89qg3uQrKc/bejne.html

    @yuvanmarimuthu4909@yuvanmarimuthu49093 жыл бұрын
  • Doing it at engineering school, and very happy to find it on KZhead ! Thanks

    @gastonhebert9967@gastonhebert99673 жыл бұрын
  • Applied Numerical Methods. I don't remember the exact name but I remember a technique which converts a definite integral to two (or natural number) terms. Gauss quadrature rule, was it? I honestly was intrigued by this method.

    @kairostimeYT@kairostimeYT3 жыл бұрын
  • could have used this video last semester during numerical methods. you explained it better in 14 minutes than my prof did in 3 lectures

    @iGR8soccer@iGR8soccer3 жыл бұрын
  • Thank you for bringing context to an otherwise "insignificant" topic covered for 15 mins in a first year calculus course! I thought I hated math, but I've just been missing out on how much fun it can be once you wrap your head around the concepts

    @ArmaanDK@ArmaanDK Жыл бұрын
  • Good stuff. Nice job.

    @tomcarroll6744@tomcarroll67449 ай бұрын
  • Looking forward to a video about Numerical Analysis, I'm taking it in the fall!

    @feuerrm@feuerrm3 жыл бұрын
  • ooh boi i am going through these in my current semester and already coded the fn for iterattive method and newton raphson, loved to know more on it😊

    @bittubabu4178@bittubabu41782 жыл бұрын
  • Great timing. I'm starting my numerical analysis class at uni tomorrow

    @TheDecooledaan@TheDecooledaan3 жыл бұрын
  • Thank you very much for this video.

    @FromLake@FromLake Жыл бұрын
  • As an Engineer I relate to these useful approximations. Thank you so much for theses examples and explanations!

    @daviddabeegukabassima8232@daviddabeegukabassima82329 ай бұрын
  • Holy crap thanks for explaining this, the random pdfs that I found on the internet are confusing as hell.

    @shrideepgaddad8721@shrideepgaddad87213 жыл бұрын
  • Awesome video!

    @Pedritox0953@Pedritox09533 жыл бұрын
  • Numerical analysis is the coolest class of functions that have already been written for you

    @davidhicks8290@davidhicks82903 жыл бұрын
  • I heard about it before but was thinking why isn't it too famous thanks for elaborating it. I always wanted to know more about it keep it up😀😀😀👍👍🙏🙏

    @rajbunsha8834@rajbunsha88343 жыл бұрын
  • long ago I wrote a integer Square root on a DSP processor. It used the DSP's single cycle multiplier to create the square. then it compared it and set one output bit. after 16 loops I had a 16 bit result.

    @LaserFur@LaserFur3 жыл бұрын
  • Chebyshev Approximations are also very useful.

    @jessstuart7495@jessstuart74953 жыл бұрын
  • great vid as always

    @patrickforsyth9880@patrickforsyth98803 жыл бұрын
  • Please make videos like this. It was a wonderful video.

    @udaysrivastava1957@udaysrivastava19573 жыл бұрын
  • The way your computer calculates square roots (assuming it's a recent computer) is using a related method, Goldschmidt's algorithm. Let Y be an approximation to sqrt(n). Set: x_0 = Y*n h_0 = Y*0.5 And iterate: r_i = 0.5 - x_i * h_i x_{i+1} = x_i + x_i * r_i h_{i+1} = h_i + h_i * r_i Then x_i converges to sqrt(n) and y_i converges to 1/2sqrt(n). As hinted at in the video, some approximations have advantages over others. In this case, the advantage is that the "inner loop" is three copies of the same operation a + b * c, called a "fused multiply-add". This saves on circuitry compared to Newton-Raphson methods.

    @DeGuerre@DeGuerre3 жыл бұрын
  • Very cool video!!

    @tommyhuffman7499@tommyhuffman74993 жыл бұрын
  • Damn it's been ages since I did maths "properly", but this was really accessible and a good reminder of how it all slots together. Thank you!

    @TylinaVespart@TylinaVespart3 жыл бұрын
  • That was one of the coolest videos about a table on my calculus book that I took as magic

    @sunnohh@sunnohh3 жыл бұрын
  • The quake 3 fast inverse square root video got me into watching these kinds of videos. Now that's a meme you'll want to see.

    @justinmccoy4270@justinmccoy42703 жыл бұрын
  • I have a Numerical Analysis midterm in 8 hours so i clicked on this as soon as i saw it in my sub box, thanks ^^

    @Lunamana@Lunamana3 жыл бұрын
  • Dude, I really have to watch all your videos about engineering’s stuff. im in my second year and there is a lot of things i have to be familiar with

    @mahdialhassan6802@mahdialhassan68022 жыл бұрын
  • This video would have been glorious half a year ago... Had a University course in evolutionary game theory and literally all of it was linear approximation because biological/evolutionary models are only estimations and I did not understand what a fixed point was. Seems so easy now... Thanks a lot!

    @MusiXificati0n@MusiXificati0n3 жыл бұрын
  • I read this under the heading computational methods TODAY!!

    @clastastic@clastastic3 жыл бұрын
  • Just to contribute an interesting point here. Arguably the most significant piece of evidence we have when it comes the global regularity problem for the Navier Stokes equations is Terence Tao’s work on the subject. His biggest paper on the subject showed that for an approximated form of the Navier Stokes equations (one that has been averaged in an extremely specific and accurate way) blow up results occur. The relevance of this is two fold 1. This may very well be one of if not the most complicated approximations ever thereby showing how approximations are an important part of math and science at every level And 2. It shows that even pure mathematicians can use approximations to create partial progress on the toughest problems ever. That result was huge as it showed both that there is a possible pathway toward a full solution and it also showed that any attempt at proving global regularity in the positive would require methods which delve into the finer nonlinear structures with the full pde that got averaged out in the approximation. In many ways, this paper is why most of the community believes that global regularity for Navier Stokes is going to be solved in the negative whenever it happens.

    @CellarDoor-rt8tt@CellarDoor-rt8tt3 жыл бұрын
  • You should definitely talk about the finite element method. Approximating differential equations is a huge deal in engineering (especially civil/mechanical/aerospace)

    @Sam-he3ks@Sam-he3ks3 жыл бұрын
  • Beautiful!

    @Listener970@Listener9703 жыл бұрын
  • Some approximations are quite good. If you use 22/7 for the value of Pi then on a 100 ft. diameter circle the circumference error is ~one and a half inches.

    @aceroadholder2185@aceroadholder21853 жыл бұрын
  • I took numerical analysis in uni (I think it was called numerical methods) and they recommended to have two scientific calculators to iterate calculations more efficiently (if we're not going to bring our laptops to use excel in class)

    @juliusteo@juliusteo3 жыл бұрын
  • approximations the engineering way: 𝝅=e=3, g=10m/s²=9=𝝅²=e²

    @matthewao@matthewao3 жыл бұрын
  • Another example of numerical approximations of things that are hard to arithmetically calculate is a matrix inverse. Similar to the iteration pf the square root, there is a simple iteration process that leads to a good approximation of the matrix inverse, which takes way longer to compute than the square root, both on a camculator and by hand

    @JonathanMandrake@JonathanMandrake Жыл бұрын
  • pretty cool stuff

    @pabloariza2295@pabloariza22953 жыл бұрын
  • Im currently taking a numerical analysis course right now, this 10 minute video made more sense than the whole class has this semester -.-

    @dakkadakka4036@dakkadakka40363 жыл бұрын
  • 0:00 I've been studying and practicing English for the last 22 of my 25 years of age, but only now I found out that, unlike my mother tongue, English has two separate words for clocks and watches, despite I've known and used both words for years now.

    @rubenlarochelle1881@rubenlarochelle18813 жыл бұрын
  • Where was this video at the start of the semester. Could have saved me so much time trying to get the early chapters in the numerical analysis class I am taking...

    @Cyrathil@Cyrathil3 жыл бұрын
  • there are some really cool algorithms. First order methods that use only the derivative and second order methods that need fewer iterations but are damn expensive. @Zach Star Please make a video on gradient descent. Hopefully some of the my students will see the simple version and we can move directly into the more involved variants. There is plain gradient descent, smooth gradient descent, accelerated gradient descent, mirror descent, coordinate descent, BFGS and L-BFGS.

    @onstantinosameranis4674@onstantinosameranis46743 жыл бұрын
  • Numerical Methods was one of the more rigorous and work-intensive courses in my mechanical engineering workload so far

    @slartbarg@slartbarg3 жыл бұрын
  • Diophantine approximation is a surprisingly interesting area of number theory too.

    @soyokou.2810@soyokou.28102 жыл бұрын
  • Video would have helped so much in understanding my numerical methods class if it was a year ago

    @yugdesai4140@yugdesai41403 жыл бұрын
  • 10:43 that iteration method is just computing the finite simple continued fractions of the golden ratio, and will converge to its simple continued fraction. A great opportunity to bring up that topic :D

    @danielsantrikaphundo4517@danielsantrikaphundo4517 Жыл бұрын
  • Yas! You posted something on your OG profile! LIT 🔥

    @dylgir1332@dylgir13323 жыл бұрын
  • A control theory and applications would be cool to control systems as well as machine learning applications also love the video applications to engineering with algorithms used in matlab and simulink modeling and simulation is such a great field!

    @grimreaper173@grimreaper1733 жыл бұрын
  • 11:53 both solutions of the equation are the golden ratio, but one is the longer side/shorter side and the other one is the reciprical, shorter side/longer side

    @vjekokolic9057@vjekokolic90573 жыл бұрын
  • i also have an amazing aproximation technique it's done like this "hmm root of 17 has to be more then 4 since 4^2 =16 but less then 5 since 5^2=25, it's closer to 4 so for all intents and purposes it's 4"

    @HypercopeEmia@HypercopeEmia2 жыл бұрын
  • i remember this when i took numerical method class. we used loop method to program this

    @bryanfuentes1452@bryanfuentes14523 жыл бұрын
  • What program do you use to make these videos? The math looks so clean, organized, and beautiful.

    @WLand10@WLand102 жыл бұрын
  • I went through the first 4 minutes of this just thinking huh, this reminds me a lot of Newton-Rhapson that I learned last summer in Numerical Comp.

    @cesaramaro6933@cesaramaro69333 жыл бұрын
  • If you are interested in the fast inverse square root, there is a neat video by Nemean: kzhead.info/sun/o5yuj89qg3uQrKc/bejne.html

    @Halibali@Halibali3 жыл бұрын
  • would love to see a video about interpolation/extrapolation :)

    @liamodonovan5374@liamodonovan53743 жыл бұрын
  • I only learned something similar I think. It was based on Taylor series and you got out of it the approximate value after iteration and how big the error was. I don't remember it very well - it was years ago - but I think if you wanted to know for example sqrt(10) - you just used sqrt(9) and sqrt(16) - so basically bracketed a number, or used (I don't remember if you needed bigger and smaller, or just 1 number that was close and knows) an easy number with the same function (in this case sqrt(x)) to start approximation. Sorry - I learned it, while learning Calculus. It looks a bit like the second method in 12:25 - but I'm not 100% certain.

    @jannegrey593@jannegrey5933 жыл бұрын
  • Right after watching this video, I listened to Bob Dylan singing "Queen Jane Approximately" from "Blonde On Blonde". Dylan really sucks at rigorous explanation, and Newton-Raphson is also well-presented elsewhere ad nauseam. I understand that going beyond the basics is more difficult, which makes producing lots of videos less likely, and maybe no one will ever even look for the next steps. That is the dilemma of the youtube STEM educator, and is in large part why MIT's OCW series and similar stuff exists and is valuable. That said, it's great that you are reaching out to learners who are just starting out. Well done, man. L'chaim.

    @danieljulian4676@danieljulian46763 жыл бұрын
  • THANK YOU.

    @b1ngnx33@b1ngnx333 жыл бұрын
  • Everyone in comments section: it was about time that you decided to finally make a video this

    @AdityaKumar-ij5ok@AdityaKumar-ij5ok3 жыл бұрын
  • pi is 3, e is 3, 4 is 3 lets fucking go

    @SonTekz@SonTekz3 жыл бұрын
    • Those lab teachers though

      @zachstar@zachstar3 жыл бұрын
  • One that I can remember (I picked it up from one of Clive Sinclair's companies) is that Pi to 6 decimal places is 355/113. Dates back to the early calculators of the 70s, before scientific calculators were available at affordable prices. BTW - 3550001/1130001 does this to 8 decimal places.

    @roberthuntley1090@roberthuntley1090 Жыл бұрын
  • The clock looks awesome

    @ARKGAMING@ARKGAMING3 жыл бұрын
  • can't wait for the numerical analysis examples that took way longer than expected :-)

    @naswinger@naswinger3 жыл бұрын
  • amazing

    @user-my1bq5uw6l@user-my1bq5uw6l Жыл бұрын
  • ¡Gracias!

    @joseant.santiago7216@joseant.santiago72162 жыл бұрын
  • I literally learned newtons method today in my Calc class. That's wild lol.

    @Lothane95@Lothane953 жыл бұрын
  • Is this relevant for gradient descent in machine learning? It looks sort of familiar as a way of slowly getting to a value (with local maxima and minima depending on the number of variables). I guess I'm asking whether sortsimilar approximations for higher powers are used in ML

    @alexbos8211@alexbos82113 жыл бұрын
  • Zach another great follow up would be looking at computation time complexity of these algorithms. What classes do they belong into. For example: is this guy O(nlog(n)) time or O(n^2) time etc.

    @theproofessayist8441@theproofessayist84413 жыл бұрын
    • It would be O(i) where i is the number of iterations you want to perform. I'm not sure there's a (meaningful) way to define its complexity if you wanted to just keep iterating until you reach a specific precision though (say, stopping when the first n digits after the decimal haven't changed since the previous iteration). It depends far too heavily on the specific function you're working with (square root, cube root, 1/e^cos(x), whatever) as well as how good your initial guess is. Maybe it would be possible to generate some form of complexity measure for a single specific function (say square root) based on the desired precision and initial guess.. possibly even an extended measure that would cover say all polynomials given the precision, guess and rank.. but I doubt there could be a generic complexity measure for any arbitrary function given the literally infinite possible functions you could apply the method to.

      @altrag@altrag3 жыл бұрын
  • Awesome

    @tedchirvasiu@tedchirvasiu3 жыл бұрын
KZhead