Which one is larger?

2024 ж. 12 Сәу.
85 899 Рет қаралды

Пікірлер
  • this aint math this is meth

    @waterishorrendous@waterishorrendousАй бұрын
    • Not really. It can be made rigorous by saying lim_{n→∞} 2ⁿ/n² = ∞

      @samueldeandrade8535@samueldeandrade8535Ай бұрын
    • ​@@samueldeandrade8535 this doesn't seem like the exact same thing as the initial problem, but I don't know if I'm able to elaborate on why does it feel like that.

      @justcommenting5117@justcommenting511719 күн бұрын
    • ​@@justcommenting5117 the problem eventually discussed in the video is the same I commented. The initial problem "what is bigger, 2^∞ or ∞²" has more than one interpretation. Actually, it has infinite interpretations. But the narrator of the video interprets it as comparing 2^x with x² I was just silly with my comment, because I agree with OP. What's done in the video is not Math. AI voice? Poorly defined problem? Bad solution and comments? This video is just bad.

      @samueldeandrade8535@samueldeandrade853519 күн бұрын
    • googology as a whole is meth

      @megubin9449@megubin944917 күн бұрын
    • @@megubin9449 oh my Euler, are kidding me that "googology" is a thing? Haha. You are absolutely right. I didn't know the study of big numbers had a name! It is the numerical sibling of category theory, from the family Nonsense.

      @samueldeandrade8535@samueldeandrade853517 күн бұрын
  • Exponential graphs increase much faster than quadratic graphs

    @DorianWhittlinger@DorianWhittlinger28 күн бұрын
    • Yep

      @jrpdude8486@jrpdude848618 күн бұрын
    • 2^2 tends to infinity. Inf^2 is infinity

      @milkingalmond2532@milkingalmond253218 күн бұрын
    • @@milkingalmond2532i guess you meant 2^x tends to infinity and infinity^x is infinity? Well it’s not that simple

      @filipe4134@filipe413418 күн бұрын
    • @@milkingalmond2532they are both infinity.

      @Mnaughten601@Mnaughten60113 күн бұрын
    • @@milkingalmond2532 2^2 is 4 stoop

      @TosGD@TosGD11 күн бұрын
  • Before watching the video, im guessing that (if they are well defined) 2^infinity is WAYYYYY bigger than infinity^2 😂

    @TheMatthewChannel4096@TheMatthewChannel4096Ай бұрын
    • Not sure they're well defined either but 2^Aleph-Null is taken as the Cardinality of the Reals.

      @j.503@j.50319 күн бұрын
    • same

      @Roperdo7@Roperdo718 күн бұрын
    • not WAYYYYY bigger, infinitely bigger lol. Which means 1,000000000000001^infinity is also bigger than infinity^9999999999999999

      @filipe4134@filipe413418 күн бұрын
    • Unless both are same

      @weo9473@weo947317 күн бұрын
    • Yeah lol lol lol lol lol lol yeah yeah

      @stickliar5934@stickliar593417 күн бұрын
  • Let me explain: Infinity is not a number, as it is endless, both equations shown in the video are endless, so you cannot conclude with one of them being larger than the other. As infinity is not a number, both of the products are equal to infinity. For the people who ask if they are equal, no they are not, as they don’t represent a value. This is like saying infinity multiplied by infinity is larger than infinity. Edit: I would also will like to confirm that there was an another saying where a half circle was equal to its diameter whereas the proof, they made smaller semicircles that go infinitely to prove pi was equal to four, but this is just completely false, as dividing something by infinity, which does not represent a value, will not give a clear result of what you are looking for. Example: Calling 1/infinity = 0 is the same thing with calling 0 x infinity = 1

    @user-xi6td9uk6c@user-xi6td9uk6c18 күн бұрын
    • and if we use a number system that defines infinity?

      @lazarmendel3784@lazarmendel378418 күн бұрын
    • Infinity can be a finite number in calculus bro it is -1/12 = infinity size of sum of all natural numbers

      @mrbutish@mrbutish16 күн бұрын
    • ​@@mrbutish you confonded maths et meths

      @redstocat5455@redstocat545516 күн бұрын
    • @@mrbutish that's false

      @shriyanshuj5130@shriyanshuj513016 күн бұрын
    • @mrbutish Average Numberphile viewer

      @ccbgaming6994@ccbgaming699416 күн бұрын
  • I think the answer is based on a wrong assumption - you deal with infinity as a definitive number as 10. I don't think that is mathematically correct, accordingly the proof is incorrect.

    @MahmoudSabry-wr2im@MahmoudSabry-wr2im27 күн бұрын
    • He only used 10 to show that 2^x grows faster than x^2

      @csd1597@csd159722 күн бұрын
    • That was just the observation

      @bigfgreatsword@bigfgreatsword20 күн бұрын
    • They are both equal because they are both infinite numbers

      @terryrodgers9560@terryrodgers956020 күн бұрын
    • How it basically works is he is taking the limit of x as x approaches infinity. Since infinity isn’t a number and just a concept, you can’t actually evaluate 2 to the infinity or infinity to the 2, but rather you can observe the pattern as some variable x approaches a ridiculously large number that we represent with infinity, and conclude which is larger. When he showed the graph at the end, you could see that the graph of 2 to the x grew much faster than x squared, showing that it will be larger and larger the farther you go out, and the closer you get to infinity.

      @qloxer1264@qloxer126420 күн бұрын
    • ​@@qloxer1264this doesn't work though. He assumed both infinites grow the same (Im, of course, being hyperbolic here) If you wanted to compare ♾² to 2^♾, you would be more correct in taking the limit as (x, y) goes to (+♾, +♾) of x²/(2^y) or (2^y)/x² or any other combination. However, none of these limits exist. Simple example, take the limit as (x, y) goes to (+♾, +♾) along the curve y=2log_2(x) of x²/(2^y) This limit is equal to lim[x->+♾] (x²/x²) = 1 It is easily shown that the limit along the curve y=x is equal to 0. Since we found 2 different curves with different limits, it means that the beginning limit does not exist. In other words, 2^♾ can be almost anything in relation to ♾²

      @methatis3013@methatis301319 күн бұрын
  • 2^infinity would be uncountable infinity

    @hayn10@hayn10Ай бұрын
    • 2^inf is still countable infinity, just larger than inf^2 uncountable infinity typically refers to a series of sets, not one singular set of numbers.

      @aoyuki1409@aoyuki1409Ай бұрын
    • @@aoyuki1409 but it represents the power set of all the natural numbers and cantors diagonal argument shows it is uncountable infinity right? correct me if i am wrong

      @hayn10@hayn10Ай бұрын
    • @@hayn10 im not sure myself, but i dont think 2^infinite cantors diagonal argument. it is just 2x2x2x2x2x2x2.... forever, not 2^1 + 2^2 + 2^3 .... that would be lim x->inf (2^x) and that would be uncountable infinity

      @aoyuki1409@aoyuki1409Ай бұрын
    • ​@@aoyuki1409The number of possible combinations of numbers you can get with 2 numbers, such as 0 and 1, with n being the number of numbers, in the combination is 2^n, meaning that the number of possible combinations you can get from a countably infinity number of 1s and 0s is 2^aleph0, with aleph0 being the number of integers or the only countable infinity. If you list different combinations of the 0s and 1s you find that the diagonal argument does work to prove that the number of combinations of 0s and 1s cannot be countably infinity, so the diagonal argument can be used to prove that 2^aleph0 is uncountably infinite, and 2^infinity must be at least 2^aleph0 so if 2^aleph0 is uncountably infinite than 2^infinity is necessarily uncountably infinite.

      @Person-ef4xj@Person-ef4xj19 күн бұрын
    • ​@@hayn10you are wrong. 2^♾ is meaningless. 2^א0 is a notation which represents the cardinality of the powerset of natural numbers. But this is definitelly not the same as 2^♾.

      @methatis3013@methatis301319 күн бұрын
  • From the limit, the left one is larger(oof with needing to correct this).

    @Inspirator_AG112@Inspirator_AG112Ай бұрын
    • From the limit, the limit does not exist. Either one can be "larger" than the other

      @methatis3013@methatis301319 күн бұрын
    • @@methatis3013: Both have an infinite limit regardless of context, and I am talking about the limit as x approaches infinity.

      @Inspirator_AG112@Inspirator_AG11219 күн бұрын
    • @@Inspirator_AG112 thing is, you cannot take the limit as x goes to infinity of x²/(2^x). This will give you 0, that's true. However, we are comparing ♾ to ♾. No one says these 2 need to grow the same. In order to make a rigorous argument, you would need to take the limit as (x,y) goes to (+♾,+♾) of x²/(2^y). This limit, however, does not exist. If you take the limit along the curve y=x, you get the former result which is equal to 0. However, if you take the limit along the curve y=2log_2(x), you get that the limit is equal to 1. Since you get 2 different results for the same limit, the limit does not exist. This is a consequence of the fact that you can write down ♾ as 2*♾ = 2*log_2(♾), so 2^♾ can be written as ♾². Alternatively, ♾²=(2^♾)² >= 2^♾ This is less rigorous, of course, but I provided a more rigorous argument earlier

      @methatis3013@methatis301319 күн бұрын
  • It’s more dependent on the context in which you see this problem. For example, in set theory, 2^infinity is technically qualitatively superior in terms of cardinality as it is a power set. Outside of bigger infinites, they are equal as in the end shown by desmos, they both ultimately reach infinity either way.

    @Rip_Red909@Rip_Red90921 күн бұрын
  • Math isnt mathinnng

    @AnshikaSingh-ot3ez@AnshikaSingh-ot3ez15 күн бұрын
  • Infinity is not a concept that we can define so easily but from my perspective, by definition infinity is a number greater than all positive numbers, infinity multiplied by itself is just infinity and 2 to the power of infinity will always be a natural positive number since we are just multiplying by 2 every time so infinity is just larger.

    @Adr14nusRA@Adr14nusRA19 күн бұрын
    • Is it a number though? Any number you'd associate with it would be smaller and you can't write it down.

      @mattoucas869@mattoucas86913 күн бұрын
    • ​@mattoucas869 but then The second one is inf times inf which is logically higher than 2 times inf

      @herobrine_anims@herobrine_animsКүн бұрын
    • @@herobrine_anims Well, not really. Nothing is greater than infinity or else that would contradict its definition. I think infinity × infinity = infinity because infinity = infinity × infinity... blah blah blah maybe. Idk, I'm not a mathematician so you should ask someone else.

      @mattoucas869@mattoucas869Күн бұрын
  • When I studied limit and continuity mathematics, I was taught that if I want to make a comparison of this type, the best idea is to try very large numbers with tendencies to infinity as long as they are calculable and allow it to be applied to all cases. I checked by making a comparison between 2^1000 and 1000^2 and it turns out that 2^1000 is greater. If we constantly raise the numerical value of the exponent of "2^1000" and compare it with the numerical value resulting from constantly raising the base of "1000^2" the first case will always be greater. For those who are confused, the value "1000" in both cases represents infinities since when graphing and playing with infinities, you usually take very large values ​​close to where a function tends to infinities. So, in my opinion, without having seen the video yet, I think that 2 to the power of infinity is greater than infinity squared.

    @lucasmita3058@lucasmita30588 күн бұрын
  • So in general, when we get a problem, which is larger 10^100 or 100^10 power, we can conclude that 10^100 power will always be larger? And sure enough 10^100 = 1^100 while 100^10 = 1,000,000,000,000,000,000,

    @StevenTorrey@StevenTorrey16 күн бұрын
  • This isn't math, this is DESMOS.

    @snks_65@snks_6518 күн бұрын
    • sorry but thats still math

      @piotrek5s170@piotrek5s17017 күн бұрын
    • - это Красти Крабс? - нет это Патрик

      @Alexey_Emelyanov@Alexey_Emelyanov12 күн бұрын
    • Это Красти Крабс? Нет это Патрик

      @Alexey_Emelyanov@Alexey_Emelyanov12 күн бұрын
  • what if you set infinity in the right term as 2^∞? this is also infity and in this case the right term would be larger, right?

    @sg4yaris@sg4yarisАй бұрын
  • they are both undefined as infinite has no answer.

    @viperdemonz-jenkins@viperdemonz-jenkins27 күн бұрын
    • ​@@Alt.Nit is still false though. If you are comparing 2^♾ to ♾², you should take the limit as (x,y) goes to (+♾,+♾) of something like x²/(2^y). This limit, however, does not exist

      @methatis3013@methatis301319 күн бұрын
  • I think you're mistaken. There is a 1-1 correspondence between the real numbers in the interval [0, 1) and the infinite cross-product Z1 x Z1 x Z1 ... (Z = {0, 1}). The former set has cardinality aleph-sub-C. There is a 1-1 correspondence between Z x Z and Z itself, which has cardinality aleph-sub-0. The rules for counting tell us that the former set should have 2^infinity elements and the latter infinity^2 elements. So, 2^infinity = alephC > aleph0 = infinity^2.

    @JayTemple@JayTempleАй бұрын
    • Why is he mistaken?

      @walidjabari4985@walidjabari4985Ай бұрын
    • ​@@walidjabari49852 ^ infinity is the cardinality of the real number line, which is UNcountably infinite, but infinity squared is only countably infinite.

      @JayTemple@JayTempleАй бұрын
  • Man is so underrated, great video!🔥

    @bointasalexandros6645@bointasalexandros664519 күн бұрын
  • so youre telling me that the count of infinitely many people in infinitely many lines is smaller than just infinitely many people in one line

    @foxe2087@foxe2087Ай бұрын
    • what if the real infinity was the friends we made along the way?

      @omgdodogamer4759@omgdodogamer475922 күн бұрын
    • It's infinitely many people in infinitely many lines in 2 dimensions vs a cube 2 people across in infinite dimensions.

      @lyrimetacurl0@lyrimetacurl019 күн бұрын
    • @@lyrimetacurl0what is a cube 2? I understand the infinite dimensions part because that’s the exponent but does it mean 2 people across infinite dimensions

      @clowncircus-dm3fd@clowncircus-dm3fd14 күн бұрын
    • @@clowncircus-dm3fd I think 2 people across just the hypercube has a side length of 2 people

      @ef-tee@ef-tee14 күн бұрын
    • @@ef-tee so a hyper cube with side length 2 vs an infinite plane?

      @clowncircus-dm3fd@clowncircus-dm3fd12 күн бұрын
  • Technically, indeterminate. However, in CS, O(n) is considerably smaller than O(a^n)

    @tylerbakeman@tylerbakemanАй бұрын
    • *O(n^2) is still smaller

      @tylerbakeman@tylerbakemanАй бұрын
    • I would be very worried if infinity appeared in my complexity analysis...

      @ef-tee@ef-tee14 күн бұрын
  • Thanks for this explanation.

    @mosesmukambojr8707@mosesmukambojr8707Күн бұрын
  • I agree with your assessment to a point, but each of these will be infinite, furthermore I can create a 1-1 correspondence between them. So in fact they are the same infinity.

    @Mnaughten601@Mnaughten60113 күн бұрын
  • IF you think about it, nothing is larger. Its basically the same as comparing infinity to infinity. Infinity cannot be measured because its magnitude can expand... Infinitely. Infinity is not a constant unlike the ones substituted in the video, so regular concepts cannot be applied.

    @colinr5817@colinr581722 күн бұрын
    • yes, but technicaly speaking, one infinite number can be larger than the other you can't say that 2*infinity = infinity just because they're both infinite numbers, right? if we divide both sides by infinity, we'll get 2*1 = 1 or 2 = 1 wich isn't right, wich means that 2*infinity is bigger than just infinity, proving that one infinite number can be larger than the other

      @superkaras588@superkaras5886 күн бұрын
    • @@superkaras588 Well, infinity is not a fixed value. So anything you add or subtract to it won't do anything, as it will still be infinity

      @colinr5817@colinr58173 күн бұрын
  • The biggest possible mistake is that it is assumed two infinity are equal. If not, the answer would be uncertain.

    @accessoryat3331@accessoryat33318 күн бұрын
  • Use monotonicity of x^1/x ... It would be a simple question

    @user-gk5zm3jf1x@user-gk5zm3jf1x9 күн бұрын
  • This better be a parody or something.

    @xavierburval4128@xavierburval412813 күн бұрын
  • lim[x->∞] x^2/2^x = lim[x->∞] ln(x^2)/ln(2^x) = lim[x->∞] 2ln(x)/xln(2) = 2/ln(2) lim[x->∞] ln(x)/x = 0. Therefore what's said in the video is true Also, if you think about it with computability theorems, ∞^2 could refer to any infinite set multiplied (cartesian product) by itself. For example N×N. Then 2^∞ could refer to any infinite sequence of pairs of elements (it has to be the same infinite as before) which is basically [a,b]^N. You could make an bijective function from N×N to {a,b}^N because that last set is a numerable union of numerable sets, therefore N×N~{a,b}^N, so if you think about it this way, what's said in the video is not true I use N because I want to mantain coherence when going from one set to another, and 2^∞ only makes sense in the context of infinite sequences of pairs, therefore that ∞ must be numerable. Also, I assume both infinities have to be the same; if you use R×R, suddenly 2^∞ is smaller than ∞^2 One less Orthodox approach I'd like to use is thinking about 2^∞ and ∞^2 as the cardinals of infinite sets. Given an infinite set A such that |A|=∞, it's provable that ∞^2=∞ (or A×A~A), and that 2^∞ is the cardinal of the parts set of A, i.e. |P(a)|=2^∞, because for finite sets of size n, |P(a)|=2ⁿ. And it's also provable that there's no injective function from P(A) to A for any set A, therefore 2^∞ is bigger than ∞^2 in this context As a final note, it's 6 am, I have to give a class in 1 hour and take a test in about 4 hours. I would greatly hate myself in the future for using so much brain power for this comment

    @fromant65@fromant6520 күн бұрын
    • Oops it seems I've made a mistake, it turns out that you cannot make a bijective function from N×N to {a,b}^N There are four possible pairs made from {a,b}: {a,b},{b,a},{a,a},{b,b}. Let's call them in order A,B,C,D If such bijective function exists, we can map every infinite sequence of these pairs to a natural number. So there should be a table like: 1: ABDACBDA... 2: BDABCADB... ... Where each natural number is associated to an infinite sequence of these pairs Then, let's say that the order of these pair is circular: B follows to A, C follows to B, D follows to C and A follows to D. If such table exists, we can construct any sequence and it should be in the table So let's made a sequence. For each position i in N of the sequence S, S[i]=Next(T[i,i]) where T[A,B] represents the pair in the position B of the A number of the table (so basically we use the pairs in the diagonal of the table) Now lets make an arbitrary table: 1: ABCD... 2: BACD... 3: CBDA... 4: DABC... With this table, our sequence would be BBAD..., which is not in the table. Moreover, if we keep adding pairs, the sequence will not be in the table, because it at least differs in one pair with the sequence in position i in the list. So there's a sequence which is not in the list, which in theory contained all the sequences. So such list and table don't exist. Therefore there's not such bijective function. And we've proven that |N×N|

      @fromant65@fromant6520 күн бұрын
  • fuck yeah, i love this! abstract math at its finest

    @autumn948@autumn948Ай бұрын
    • it uses a very non-abstract proof though, which is also wrong 😂

      @ef-tee@ef-tee14 күн бұрын
  • Debate of the Century.

    @truth8526@truth852624 күн бұрын
    • its either 2^infinity or theyre the same

      @aykarain@aykarain21 күн бұрын
  • It depends on what you mean by infinity, but if you meant lim x->inf 2^x / x^2, the result goes to inf

    @ValkyRiver@ValkyRiver19 күн бұрын
  • You can also do this with limits. If you have a fraction with x squared as the numerator and 2 raised to the power x as the denominator, if the function approaches 0 as x approaches infinity then 2 raised to the power x is greater. However, if you have a fraction with 2 raised to the power x in the numerator and x squared in the denominator, if the function approaches infinity as x approaches infinity, 2 raised to the power x is larger still. Using this method, We can see that the limit of 2 raised to the power x as x approaches infinity is larger than the limit of x squared as x approaches infinity. Now the question is by how much?

    @mrgamepigeon6586@mrgamepigeon658618 күн бұрын
    • Niceee, I learnt about limits this year and this is good!

      @Fatima-yg4bh@Fatima-yg4bh18 күн бұрын
  • Obviously equal. Infinity means it never stops, so no matter what configuration you choose, the result of both equations is infinity. By your explanations one should be larger than the other, but if you put actual numbers in there, they will be equally inifinite

    @huntcringedown2721@huntcringedown272118 күн бұрын
    • Some infinities are bigger than others in math.

      @bleudauvergne5852@bleudauvergne585216 күн бұрын
    • infinity^2 is countably infinite, but 2^infinity is incountably infinite (see the Wikipedia entry for Cantor's diagonal argument, for example) so they can actually be ordered (cardinal numbers etc.) Although I would be careful using the words bigger/smaller for these concepts. Also the proof in the video is wrong because it assumes infinity is a number, so you are right in that regard

      @ef-tee@ef-tee14 күн бұрын
  • From how I understand it, with your method both are countably infinite if you first restrict them to natural numbers: if you specify a certain member of an infinite set where each member is represented as 2^n or n^2 with any natural n, you can count through all the natural numbers until you reach n, and thus when n→∞, you can still count up to there, even if it takes an infinite amount of time. A bigger infinity you wouldn't be able to count up to even with unlimited time (kinda like how you can't count up from every real in-between 0.23 and 0.24 since you can simply add more digits). Because both sets are one-to-one correspondent with the set of natural numbers, they are equally infinite. Countable infinities are considered the smallest between infinities of different sizes because they have the cardinality of natural numbers (aleph-null). Now, since you counted them up with the set of real numbers, we can use similar logic to conclude both have the cardinality of real numbers and, thus, should be the same size. Do correct me if I'm wrong.

    @RuyVuusen@RuyVuusen15 күн бұрын
  • I appreciate the explanation. Compared to most recent math videos on here, it is understandable and MAY be agreed with. Notice I said "may". It doesn't mean, that I agree or disagree with it.. The truth is where I was raised, we were taught not to treat the "lazy 8" symbol an individual number. Most people do, and hence the explanation in this video. Where I was brought up, the infinity symbol basically meant a value that increases without bounds. Since the exponent in increasing without bound in the first expression, and the base is in the second, there is no way to tell which value is in really higher. But since the video indicates hints that an expression with a lower base and a higher exponent. than reversing it using the same numbers (in other words the same higher exponent now the base, and the same lower base now the exponent), it appears that the first expression would be higher. The catch is as shown, the same numbers have to be experimented with each as base and exponent. If one is changed for the second expression, this could make a difference.

    @PREGO1966@PREGO196618 күн бұрын
  • Either one can be bigger than the other. The only way to have a definitive answer, is within a limit. It entirely depends on how fast the infinity on the left increases relative to the infinity on the right. If we set both uses of infinities to be x as x approaches infinity, then you do indeed get the result in the video. However, If we set the infinity on the left (I’ll notate with L) to be log2(R) (where R is the infinity on the right), L and R still both approach infinity. And yet the expression on the right hand side will be greater instead.

    @gregstunts347@gregstunts34711 күн бұрын
  • Thanks for posting this. It illustrates on of great difficulties when thinking about infinities. For example, which is larger infinity or infinity + 1? Your reasoning must conclude infinity + 1. Just draw the graphs for y = x and y = x + 1

    @martynpage1794@martynpage179416 күн бұрын
    • Infinity is not a number so it doesnt make sense what you are saying also. Infinity+1 and infinity will still both equal infinty in the end. That just proves you have no idea how set theory works

      @theRealMaMo@theRealMaMo11 күн бұрын
    • @@theRealMaMo it was actually the point I was trying to make. Just proves you have no idea about nuance.

      @martynpage1794@martynpage17949 күн бұрын
  • Simply do it using mathematical induction /using derivative to find rate of increase

    @mjceducationchannel4478@mjceducationchannel4478Күн бұрын
  • it depends on what that ∞ represents. if that ∞ represents limit, 2^∞ > ∞^2. lim(x→∞) (2^x)/x² = ∞. if that ∞ represents transfinite cardinial, like Aleph0, 2^Aleph0 > Aleph0 = (Aleph0)^2 2^Aleph0 is cardinality of all real numbers while (Aleph0)^2 is still Aleph0. if that ∞ represents transfinite ordinal, like omega, 2^omega = omega < omega². the limit ordinal of {2, 4, 8, 16, ...} is a number that comes right after all natural numbers, which is equivalent to omega. omega² is defined as limit ordinal of {omega, omega2, omega3, ...}.

    @BidenBlessesYou@BidenBlessesYou17 күн бұрын
  • Infinity squared = infinity * infinity 2 ^ infinity = 2 ^ (2 ^ (infinity/2)) = 2^2^infinity since halfing an infinite number is still infinite, it gives you 4^infinity If you repeat this cycles, you get X^infinity where X goes towards infinity, which gives you Infinity ^ Infinity which is bigger then infinity ^ 2

    @uart341@uart34114 күн бұрын
  • Let n approach infinity, if you multiply 2 n times, and that n approaches infinity, 2^n would also approach infinity. n squared, as n approaches infinity is also well approaching infinity. And that’s also shown on the graph, they aren’t limited upper-bound, so they will continue to increase, thus neither of them is bigger than the other one.

    @tschetscher@tschetscher11 күн бұрын
  • Logic is flawed. Infinity is not finite

    @MazziniFan@MazziniFan6 күн бұрын
    • Bad math video.

      @cyberagua@cyberagua2 сағат бұрын
  • Take limit of x to infinity, and calculate the derivative of (2^x) / (x^2) using L'Hospital's rule. Using this method 2^x is larger, so 2^ infinity is larger

    @dracugaming4377@dracugaming4377Ай бұрын
  • Infinity to the power of two is larger because you cant get to infinity starting with a finite number like two. Two to the power of infinity will just keep multiplying, and never get to infinity while infinity to the power of two is already infinity, meaning that infinity to the power of two is bigger.

    @FahdCoolArab1002@FahdCoolArab100211 күн бұрын
    • If you repeat for infinite times you will get to infinity this is simple logic

      @theRealMaMo@theRealMaMo11 күн бұрын
  • Use more different colors in graphs, with emphasized intersection points

    @dtikvxcdgjbv7975@dtikvxcdgjbv797518 күн бұрын
  • Alternative ways to think 1. Go through limit approach and apply L-H rule and find value of limit 2. Remember exponential always dominant with respect to polynomial

    @creatordip9900@creatordip99003 күн бұрын
  • Except they both go to infinity, so they are the same.

    @OneWeirdDude@OneWeirdDude18 күн бұрын
    • No, when dealing with functions' limits, being able to compare infinities is important. ♾️/♾️ Could be infinity or could be 0, depending on which one's bigger. Hope this helps!

      @Fatima-yg4bh@Fatima-yg4bh18 күн бұрын
    • both going to infinity does not imply that they are the same.

      @BidenBlessesYou@BidenBlessesYou17 күн бұрын
  • You could transform this into a limits question, lim x--> ∞ 2^x/x^2. If answer is greater than 1 then 2^x is greater

    @vedanshbudhia8148@vedanshbudhia814811 күн бұрын
  • Problem: Infinity is not a number. But if you want to use it as a number then both sides evaluate to infinity. Therefore they're equal. The only way you could show otherwise would be to show that one infinity has a higher cardinality than the other. This wan't addressed in this video. Georg Cantor showed that the number of positive integers (1, 2, 3, ...) is EQUAL to the number of infinitely dense rational numbers, even though there are an infinite number of rational numbers between any two poitive integers. Both infinite sets have the same cardinality and therefore considered equal.

    @kenhaley4@kenhaley418 күн бұрын
  • It depends. Are we using ordinal exponentiation or cardinal? In the former they are equal, but in the latter they are different. (Or is infinity² larger in the former case? I don't remember...)

    @lily_littleangel@lily_littleangel20 күн бұрын
    • ♾ is not an ordinal nor a cardinal

      @methatis3013@methatis301319 күн бұрын
    • yep omega² is bigger than 2^omega.

      @BidenBlessesYou@BidenBlessesYou17 күн бұрын
    • @@BidenBlessesYou why are you assuming ♾=ω tho? Why couldn't ♾=2log_2(ω) for example? Why couldn't the first ♾ be ω and second ♾ be 2^2^ω?

      @methatis3013@methatis301317 күн бұрын
    • @@methatis3013 I just tried to give an example of 2^∞

      @BidenBlessesYou@BidenBlessesYou17 күн бұрын
    • @@BidenBlessesYou if you consider ω to be an "infinite numebr", then so can all numbers larger than ω be considered "infinite numbers". If you set ♾=ω, you are effectively saying ω+1>♾, which is nonsensical

      @methatis3013@methatis301316 күн бұрын
  • Personally, I'd prove the limit as x approaches infinity of 2^x/x^2

    @bigfgreatsword@bigfgreatsword20 күн бұрын
  • Me when continuum theorem:

    @diht@diht14 күн бұрын
  • Place an infinite amount of points on a circumference of a circle. Then pick any point of your choice on the circumference. Add one to that point or subtract one from that point. How far have you moved on the circumference in radians?

    @user-ky5dy5hl4d@user-ky5dy5hl4d24 күн бұрын
    • Add one of what? If you mean move up a different point, that would be 0 radians, since a circle is defined as all points a certain distance away from a center.

      @mistahmatrix@mistahmatrix22 күн бұрын
    • @@mistahmatrix Do you understand the concept of one? (1)? Because I can prove that 1x0=1.

      @user-ky5dy5hl4d@user-ky5dy5hl4d21 күн бұрын
    • @@user-ky5dy5hl4d your units arent clear. "1" is a mathematical object itself representing a set. adding 1 apple? 1 banana? 1 radian? 1 degree?

      @jizert@jizert20 күн бұрын
    • ​@@user-ky5dy5hl4d no, he's right, your question doesn't make sense

      @georgepetrou501@georgepetrou50120 күн бұрын
    • @@georgepetrou501 All questions make sense. Answers do not. I see you are or were a gymnast. So was I. Unless I see a crucifix.

      @user-ky5dy5hl4d@user-ky5dy5hl4d20 күн бұрын
  • They are both infinity, but if we talking about a countable infinity, 2^inf is larger because it starts off slower and gets really big really fast. 2^15 is 32768. And 15^2 is only 225

    @FluffyTheGamerWolf55@FluffyTheGamerWolf5511 күн бұрын
  • on if the value of x=3 in X² and 2^X The value of X² is greater by just 1 rather than that in all the values 2^X is greater

    @azhanmd2680@azhanmd26807 күн бұрын
  • Infinity is not a number, it's a concept

    @sulitjc5yearsago421@sulitjc5yearsago42111 күн бұрын
  • It is a Similar question to the question in jee advanced as it was to Compare π^e and e^π

    @Riyanahmed-66-_7.@Riyanahmed-66-_7.9 сағат бұрын
  • very interesting video! i wish tho that you played a little bit with your proof there because going a little further you could prove that any number larger than 1 to the power of infinity is larger than the infinity to the power of any real number. Which means 1,0000000001^infinity is larger than infinity^999999999999 and that’s really fucking impressive lol.

    @filipe4134@filipe413418 күн бұрын
  • When you compare Megabit (MB) and Mebibit (MiB)

    @SuryaBudimansyah@SuryaBudimansyahАй бұрын
  • I won't split hairs about the use of infinity. I assumed that the video is about the limit. The video has a nice, reasonable start with "let's try a few exmples to get a better idea", but there is no real proof at the end. For a real proof, you can start with the hypothesis 2^x > x^2 for x>1. Then take the natural logarithm on both sides to get x*ln(2) > 2*ln(x) or approximately x > ln(x)*2.89. It is already known that ln(x) eventually grows slower than x (that's why logarithmic amplifiers are used for signal compression). Therefore, eventually x will be larger than ln(x)*2.89, which proves the hypothesis for large enough x, in particular when approaching infinity.

    @kbe9947@kbe994717 күн бұрын
  • Don't treat infinity like a number though, since there's a lot of rules in many equations that wouldn't work if infinity was a number. Infinity breaks the system, so it's treated instead as a concept.

    @amazingfireboy1848@amazingfireboy184810 күн бұрын
  • Bro took"infinity war" literally

    @MoustafaAbdelghani-gb1lw@MoustafaAbdelghani-gb1lw3 күн бұрын
  • These are both equal to infinity, what is presented in the video is more a question of limits. For example if you had (2ˣ)-(x²), after the 3rd intersection point, it would always be a positive number, meaning the first is larger. This means that as x goes to infinity, the left side grows faster than the right side, and thus would overpower it, which would make it "larger"(for any finite number, x-y is positive if and only if x>y, so this is a reasonable pattern to carry over to infinite numbers.) In calculus this can be applied more generally as things that aren't the highest degree not mattering(eg. x³ will overpower x², because 3>2.) Cool video, but the presentation of the problem is a bit misleading.

    @Izzythemaker127@Izzythemaker12713 күн бұрын
  • in the end they're both equal... there is no number larger than infinity

    @hasanmohammed3690@hasanmohammed369011 күн бұрын
    • Infinity is not a number

      @theRealMaMo@theRealMaMo11 күн бұрын
  • How tf bro only have 160 subscribers

    @684_@684_19 күн бұрын
  • Well yeah my thought process tho is that, 2^infnity never ever ends you just get bigger and bigger numbers while infinity² is just infinity i think and infinity is always bigger than any number you get no matter how large, if you keep mutiplying by 2 even to the end of time

    @tnt5320@tnt532022 күн бұрын
    • i think he is just using a weird notation to say "which goes to infinity quicker as we increase n, 2ⁿ or n²?"

      @jizert@jizert20 күн бұрын
  • This is easy, just looking at the growth 2 to the power of x will always excess the growth of x squared. So 2 to the infinity power is bigger than infinity squared. Video over

    @reflex9238@reflex923814 күн бұрын
  • Good question... As infinity itself undefinable... Comparing two such may lead to illusion though mathematically logically true

    @kaavyasri2705@kaavyasri270522 күн бұрын
    • i can define infinity

      @lazarmendel3784@lazarmendel378417 күн бұрын
  • 2 multiplied by itself equals infinity. Infinity squared is an unbound set of unbound sets. Largeness is not relevant when something is unbound.

    @richardhutnik@richardhutnik17 күн бұрын
  • It’s probably me ngl ( Im just built like that )

    @quaxky326@quaxky32618 күн бұрын
  • Actually, in cardinal, 2^infinity is bigger than Infinity^2. However, in ordinal, 2^infinity is smaller.

    @g14357@g1435713 күн бұрын
  • 2^x > x^2 if x>4 so infinity is clearly higher than 4

    @pelayomedina2174@pelayomedina217411 күн бұрын
  • Rule 1 = No 2 infinities are equal But if we are comparing with same infinity Then limn→∞2ⁿ/n²=∞ .... Therefore 2^∞ is absolutely larger in comparison

    @DarthVader-JEDI@DarthVader-JEDI9 күн бұрын
  • Well, they're the same Infinity isn't a number, its a concept, it just means it goes on forever

    @F.R.E.D.D2986@F.R.E.D.D298615 күн бұрын
  • but in in fisrt one the maximum number u can obtain is infinite, as in the second one is infinite times infinite. Not the same

    @sevilladescenso6911@sevilladescenso69117 күн бұрын
  • Infinity can’t be treated as a number it’s a concept, there is no difference between infinity^2 and 2^infinity, this video is fundamentally wrong to even compare the two. Of course if said infinity was a number 2^n would be larger than n^2

    @davidtischer752@davidtischer75222 күн бұрын
    • i think he is just using a weird notation to ask which diverges quickerr

      @jizert@jizert20 күн бұрын
  • *"But bro ∞ is an unstoppable thing. So 2^∞ is ∞ and ∞² is also ∞ so both are equal. For 2^x and x², if x is finite then only we can say 2^x>>>x² (only if x is finite). But if x is ∞ they are non comparable as ∞,∞²,∞³,∞^∞,2^∞... All are equal as all tends to ∞. If u considered ∞ as a very large number then only 2^∞>>∞². But the definition of ∞ says it's an unstoppable value so all ∞,∞²,∞³,∞^∞,2^∞... Are equal"👍*

    @padmasangale8194@padmasangale819421 күн бұрын
    • So the points cross at 0, 4, infinity and maybe (infinity-4)

      @lyrimetacurl0@lyrimetacurl019 күн бұрын
  • Technically they are equal Infinity is very strange number, so it don't have to act like others. No matter, ho many times me multiply infinity, it will be infinity. So, W^2 is infinity. 2×2×2×2.... Infinity times is obviously infinity. So, 2^W is olso infinity. W^2=2^W

    @doirit@doirit15 күн бұрын
  • In my logic if you add or substract anything or multiply or divide anything by infinity it equals infinity

    @esma-85@esma-8515 күн бұрын
  • It is impossible to guess which is bigger

    @rajanisingh7388@rajanisingh738810 күн бұрын
  • 2^infinity is infinity infinity^2 is infinity of infinities easy

    @dropedguy8937@dropedguy893711 күн бұрын
  • They equal to other, greater than other and less than other at the same time

    @hieunek304@hieunek30420 күн бұрын
  • How about ∞^2 ?

    @The_Zerous_One@The_Zerous_One10 күн бұрын
  • Our first question should be "what is infinity"

    @yassirthelegend6517@yassirthelegend651710 күн бұрын
  • Its technically 2^infinity If you were to replace infinity with a countable number You’ll see that 2^(insert number) is larger than (insert number)^2

    @omegasteve8485@omegasteve848516 күн бұрын
  • this doesn't make any sense, how can infinity be smaller or larger?

    @notverygamer8562@notverygamer856221 күн бұрын
    • hes just using notation for "which diverges quicker, n² or 2ⁿ"

      @jizert@jizert20 күн бұрын
  • Solving is Easier by log

    @jamildedhia4231@jamildedhia423114 күн бұрын
  • There is not such thing as larger or not when they are both infinitely big...

    @kubami5543@kubami55435 күн бұрын
    • Sure.

      @cyberagua@cyberagua2 сағат бұрын
  • Simple -1/12 = infinity, so -1/12 squared is indeed less than 2 powered to -1/12

    @mrbutish@mrbutish16 күн бұрын
  • If we put both of these numbers into a grid perspective infinity to the power of two is a grid in which there is and infinite line and that infinite line is repeated infinitely to the side of the infinite line but two to the power of infinity is a grid with two dots double infinitely and is two line of infinity so infinite to the power of two is bigger

    @Yanu-sp3qc@Yanu-sp3qc2 күн бұрын
  • This is exactly how I saw it with 2^10 > 10^2

    @Terabyte1427@Terabyte142720 күн бұрын
  • Missed the chance to make it 8^∞ vs ∞^8 😂

    @StuMachInfinity@StuMachInfinity15 күн бұрын
  • 2^infinity = 2^aleph-0 = aleph-1 infinity^2 = aleph-0^2 = aleph-0 WHICH ONE DO YOU THINK IT IS BIGGER? THE CARDINALITY OF THE REAL NUMBERS OR OF THE INTERGERS??

    @e-o_ThingXD69@e-o_ThingXD6919 күн бұрын
  • This shouldn’t matter I think… if infinity is involved the number is ALWAYS growing or infinity… so they both equal the same thing inherently. I haven’t done hardcore math in a long time, but since every number is being squared while 2 is being raised to the power of every number they still encompass the same parameters… right? Even numbers smaller than 1 keep getting smaller. This is why I SOMETIMES hate math. But mostly I love it. I makes some cool stuff

    @TailicaiCorporation@TailicaiCorporation13 күн бұрын
  • Ok, I don't completely get this but doesn't the infinite hotel problem say the opposite, that inf^2 is 2nd degree of infinity? E.g. no matter how many times you multiply by 2, you still just get a really large number - infinity - but if you square this infinity, you have infinitely many infinities?

    @Hypersypher@Hypersypher14 күн бұрын
  • Put x as 3 😂

    @gyani7797@gyani779721 күн бұрын
  • square root of infinity^2 is just infinity and suare root of 2^infinity is 2^(infinity/2) since infinity divided by 2 is still infinity, square root of 2^infinity > square root of infinity^2 and 2^infinity > infinity^2

    @superkaras588@superkaras5886 күн бұрын
  • Look, if you treat that Infinity as N(R), 2^Infinity is like N(A = {x such that x is a subset on R}) and Infinity^2 is N(B = {(x,y) such that x and y belong to R}. Let's call C = {Q such that Q belongs to B and Qx = Qy} and D = B - C. Then, C = {(x,x) such that x belongs to R}, N(C) = N(R) = N({x such that x belongs to A and N(X) = 1}). Also, D = {(x,y) such that x and y belongs to R and x != y} and N(D) = N(R cartesian R) - N(R) = N({{Qx, Qy, Qx-Qy} such that Q belongs to D}) = N({x such that x belongs to A, N(x) = 3, x = {a, b, a-b}, a and b belongs to R and a != b}). That way, N(B) = N({x such that x belongs to A, (N(x) = 1 or (N(x) = 3 and x = {a, b, a-b}))}). Thus, A have N({x such that x belongs to A, N(x) = 2 or N(x) > 3 or (N(x) = 3 and x = {a, b, c} such that c != a-b and a, b, c belongs to R)}) more elements that B.

    @aspiranteanahor7133@aspiranteanahor7133Күн бұрын
  • You don't have to understand this with logarithms let me clear this short way Infinity is a thing so can't be multiplication divided If you take this infinity as a large number then it can be minus and divided but not multiple and add because nothing can be higher than large number no it can be lower 2^infinity doesn't exist same for infinity^2 But you can do this infinity-n and z≥0/infinity :) You can ask your class teacher does 2^infinity exist

    @tastyfood2020@tastyfood202012 күн бұрын
  • I think infinity^2 larger, because: 2^infinity is infinitely big set of numbers, while infinity^2 is infinitely big set of infinite sets of numbers.

    @kknowlage9843@kknowlage984320 күн бұрын
  • Answer is 2 power infinity

    @user-lb4gb9gj2j@user-lb4gb9gj2j12 күн бұрын
  • I think it's same because if X = 2 (♾️=♾️)

    @kyawwaiyanlin@kyawwaiyanlin11 күн бұрын
KZhead